Home Interdiffusion in the β Mo–Ti Solid Solution at High Temperatures
Article
Licensed
Unlicensed Requires Authentication

Interdiffusion in the β Mo–Ti Solid Solution at High Temperatures

  • Isabelle Thibon , Denis Ansel , Michel Boliveau and Jean Debuigne
Published/Copyright: December 27, 2021
Become an author with De Gruyter Brill

Abstract

Interdiffusion between titanium and molybdenum has been investigated at high temperatures from 1250 to 1800 °C. A Kirkendall effect was noticed. The interdiffusion coefficients evaluated by the Den Broeder method are strongly dependent on the composition. The Hall method is used to determine the diffusion coefficients at the concentration limits. These coefficients are compared with the impurity diffusion coefficients in the pure metals from the literature, and with coefficients calculated by the Vignes and Birchenhall relation. This binary system does not exhibit an anomalous behaviour. The interdiffusion coefficient at the Kirkendall interface is also calculated by the Heumann method and compared with the results of our previous calculations.


I. Thibon, D. Ansel, M. Boliveau, J. Debuigne Laboratoire de Métallurgie et Physico-Chimie des Matériaux INSA 20, av. des Buttes de Coësmes F-35043 Rennes Cedex France

Literature

1 Massalski, T. B. (ed.): Binary Alloy Phase Diagrams, ASM Int., Metals Park, OH (1986).Search in Google Scholar

2 Eylon, D.: in: Proc. Beta Titanium Alloys, Rev. Franç. de Métal. no. 8, Paris (1994) 75–82.Search in Google Scholar

3 Bania, P. J.: in: Proc. Beta Titanium Alloys, Rev. Franç. de Métal. no. 8, Paris, (1994) 7–19.Search in Google Scholar

4 Kale, G. B.; Patil, R. V.: Mater. Trans. 35 (1994) 439 – 444.10.2320/matertrans1989.35.439Search in Google Scholar

5 Askill, J.; Gibbs, G. B.: phys. stat. sol. 11 (1965) 557–565.10.1002/pssb.19650110207Search in Google Scholar

6 Onodera, H.; Ohyama, H.; Nakajima, H.; Takatori, H.; Fujii, H.; Maeda, T.; Takahashi, H.; Watakabe, S.: Defect Diff. Forum 9598 (1993) 729–734.10.4028/www.scientific.net/DDF.95-98.729Search in Google Scholar

7 Lesage, B.; Huntz, A. M.: J. Less-Common Met. 52 (1977) 197209.10.1016/0022-5088(77)90002-9Search in Google Scholar

8 Le Gall, G.; Ansel, D.; Debuigne, J.: Acta metall. 35 (1987) 2297–2305.10.1016/0001-6160(87)90077-0Search in Google Scholar

9 Den Broeder, F. J. A.: Scripta metall. 3 (1969) 321–325.10.1016/0036-9748(69)90296-8Search in Google Scholar

10 Villars, P.; Calvert, L. D.: Pearson’s Handbook of Crystallographic Data for Intermetallic Phases, ASM Int., Metals Park, OH 3 (1985).Search in Google Scholar

11 Touloukian, Y S.: Thermophys. Prop. Mat., Plenum, New York 12 (1975).Search in Google Scholar

12 Adda, Y.; Philibert, J.: La diffusion dans les solides, Presses Universitaires de France, Paris (1966).Search in Google Scholar

13 Brown, A. M.; Ashby, M. F.: Acta metall. 28 (1980) 1085–1101.10.1016/0001-6160(80)90092-9Search in Google Scholar

14 Vignes, A.; Birchenhall, C.E.: Acta metall. 16(1968) 1117–1125.10.1016/0001-6160(68)90047-3Search in Google Scholar

15 Ansel, D.; Thibon, I.; Boliveau, M.; Debuigne, I.: Acta Mater. 46 (1998) 423–430.10.1016/S1359-6454(97)00272-3Search in Google Scholar

16 Heumann, Th.: Z. Naturforsch. A 32 (1977) 54–56.10.1515/zna-1977-0112Search in Google Scholar

17 Philibert, J.: Diffusion et transport de matière dans les solides, Les Editions De Physique, Les Ulis (1985).Search in Google Scholar

Received: 1997-04-21
Published Online: 2021-12-27

© 1998 Carl Hanser Verlag, München

Downloaded on 16.10.2025 from https://www.degruyterbrill.com/document/doi/10.3139/ijmr-1998-0034/html
Scroll to top button