Home Change of Crystal Orientation in Straining and Dislocation Glide Systems
Article
Licensed
Unlicensed Requires Authentication

Change of Crystal Orientation in Straining and Dislocation Glide Systems

  • Orlová Alena
Published/Copyright: December 27, 2021
Become an author with De Gruyter Brill

Abstract

Copper single crystals subjected to compressive creep at 773 K changed the crystallographic orientation of their longitudinal direction, chosen as a direction of loading. In compressive deformation the change moves the longitudinal direction to the normal of the slip plane. This fact is utilized in the present paper to an investigation of the possible activity of dislocation slip systems on non-compact crystal planes. The results show that the average change of orientation can be interpreted well by an activity of compact 〈110〉 {111} slip systems. Local deviations from the average final orientation can indicate a non-compact glide but a connection with substructure misorientations is expected, too. There are microstructural indications of dislocation cross-slip to {100}, {110} and (probably) {131} non-compact slip planes.


A. Orlová Institute of Physics of Materials Academy of Sciences of the Czech Republic Žižkova 22 CZ-616 62 Brno, Czech Republic

  1. The work was supported by the Grant Agency of the Academy of Sciences of the Czech Republic under the grant No. A2041504.

Literature

1 Driver J. H.; Juul Jensen, D.; Hansen N.: Acta metall. mater. 42 (1997) 3105–3114.10.1016/0956-7151(94)90408-1Search in Google Scholar

2 Theyssier, M. C.; Chenal, B.; Driver, J. H.; Hansen, N.: phys. stat. sol. (a) 149 (1995) 367–378.10.1002/pssa.2211490127Search in Google Scholar

3 Kuhlmann-Wilsdorf, D.; Hansen, N.: Scripta metall. mater. 25 (1991) 1557.10.1016/0956-716X(91)90451-6Search in Google Scholar

4 Liu, Q.; Hansen, N.: phys. stat. sol. (a) 149 (1995) 187–199.10.1002/pssa.2211490113Search in Google Scholar

5 Hansen, N.; Hughes, D. A.: phys. stat. sol. (a) 149 (1995) 155–172.10.1002/pssa.2211490111Search in Google Scholar

6 Wert, J. A.; Liu, Q.; Hansen, N.: Acta metall. mater. 45 (1997) 2565 – 2576.10.1016/S1359-6454(96)00348-5Search in Google Scholar

7 Schmid, E.; Boas, W.: Plasticity of Crystals, Chapman and Hall Ltd., London (1950).Search in Google Scholar

8 Orlová, A.: Z. Metallkd. 86 (1995) 719–725 and 726–731.Search in Google Scholar

9 Bacroix, B.; Jonas, J. ].: Textures and Microstructures 8&9 (1988) 267–311.10.1155/TSM.8-9.267Search in Google Scholar

10 Anongba, P.; Bonneville, J.; Verger-Gaugry, J. L.: Scripta metall. mater. 21 (1987) 777–782.10.1016/0036-9748(87)90321-8Search in Google Scholar

11 Hirsch, P. B.; Howie, A.; Nicholson, R. B.; Pashley, D. W.; Whelan, M. J.: Electron Microscopy of Thin Crystals, Butterworths, London (1965).Search in Google Scholar

12 von Mises, R.: Z. Angew. Math. Mech. 8 (1928) 161 –185 – cited from [14].10.1002/zamm.19280080302Search in Google Scholar

13 Taylor, G. I.: J. Inst. Metals 62 (1938) 307–324 – cited from [14].Search in Google Scholar

14 Chin, G. I.; Mammel, W. L.: Trans. Met. Soc. AIME 239 (1967) 1400–1405.Search in Google Scholar

15 Orlová, A.: phys. stat. sol. (a) 150 (1995) 247–256.10.1002/pssa.2211500122Search in Google Scholar

16 Anongba, P. N. B.; Bonneville, J.; Martin, J. L.: Acta metall. mater. 41 (1993) 2897–2906 and 2907–2922.10.1016/0956-7151(93)90105-2Search in Google Scholar

17 Martin, ]. L.; Caillard, D.: Z. Metallkd. 84 (1993) 867–873.Search in Google Scholar

18 Orlová, A.: Kovové Mater. 23 (1985) 751–760.Search in Google Scholar

Received: 1997-03-03
Published Online: 2021-12-27

© 1998 Carl Hanser Verlag, München

Downloaded on 16.10.2025 from https://www.degruyterbrill.com/document/doi/10.3139/ijmr-1998-0038/html
Scroll to top button