Home Precipitation Trends in Highly Alloyed Austenitic Stainless Steels
Article
Licensed
Unlicensed Requires Authentication

Precipitation Trends in Highly Alloyed Austenitic Stainless Steels

  • Rachel F A. Jargelius-Pettersson
Published/Copyright: December 27, 2021
Become an author with De Gruyter Brill

Abstract

The influence of alloying levels in the range 0.01 to 0.5 % nitrogen, 4.5 to 6 % molybdenum and 0 to 10 % manganese on precipitation behaviour has been evaluated for austenitic stainless steels with a base composition of 20% Cr, 18 or 25 % Ni and < 0.02 % C. Both precipitation kinetics and the equilibrium conditions have been investigated. Precipitating phases include a number of intermetallic phases in addition to nitrides, silicides and carbides; some of these were transient phases which occurred only in the early stages of precipitation and were not present in the equilibrium structure. Experimental results are compared with calculations of elemental activities and the driving force for precipitation of different phases.

Abstract

Der Einfluß der Legierungselemente Stickstoff, Molybdän und Mangan auf das Ausscheidungsverhalten in austenitischen rostfreien Stählen der Zusammensetzung 20% Cr, 18 oder 25 % Ni und < 0.02 % C wurde untersucht. Die Legierungsanteile variierten in den folgenden Bereichen: Stickstoff 0.01 bis 0.5%, Molybdän 4.5 bis 6% und Mangan 0 bis 10 %. Die Ausscheidungskinetik, sowie die Gleichgewichtszustände wurden untersucht. Die untersuchten Phasen waren intermetallische Phasen, sowie Nitride, Silizide und Karbide. Einige Phasen waren nicht stabil und traten nur zu Ausscheidungsbeginn auf. Im Gleichge- wichtsgefäge waren diese nicht mehr vorhanden. Die experimentellen Resultate wurden mit den berechneten Elementaktivitäten und Gibbs’schen Energie verglichen.


R. F. A. Jargelius-Pettersson Swedish Institute for Metals Research Drottning Kristinas väg 48 S-114 28 Stockholm, Sweden

  1. The financial support for this work by Avesta Sheffield AB, AB Sandvik Steel, Fagersta Stainless AB, ABB Powdermet (now Powdermet Sweden AB) and the Swedish Board for Industrial and Technical Development (NUTEK) is gratefully acknowledged. Thanks are also expressed to Avesta Sheffield AB and AB Sandvik Steel for the preparation of the alloys, the Naval Postgraduate School, Monterey, USA for the provision of electron microscopy facilities and Staffan Hertzman for advice on the use of ThermoCalc.

Literature

1 Tisinai G. F.; Stanley, J. K.; Samans, C. H.: Trans. AIME 6 (1954) 1259–1267.Search in Google Scholar

2 Thier, H.; Bäumel A.; Schmidtmann, E.: Arch. Eisenhüttenw. 40 (1969) 333–339.10.1002/srin.196904324Search in Google Scholar

3 Blazejak, D.; Herbsleb, G.; Westerfeld K.-J.: Werkstoffe und Korrosion 27 (1976) 398–403.10.1002/maco.19760270603Search in Google Scholar

4 Brandis, H.; Heimann, W.; Schmidtmann, E.: TEW-Technische Berichte 2 (1976) 150–166.Search in Google Scholar

5 Horne, E.: TEW – Technische Berichte 6 (1980) 121–126.Search in Google Scholar

6 Grobner, P. J.: Climax Molybdenum Report RP-33-81-08 (1981).Search in Google Scholar

7 Tuma, H.; Landa, V; Löbl, K.: Mémoires et Etudes Scientifiques Revue de Métallurgie 5 (1981) 255–259.Search in Google Scholar

8 Briant, C. L.; Mulford, R. A.; Hall, E. L.: Corrosion 38 (1982) 468–477.10.5006/1.3577362Search in Google Scholar

9 Lai, J. K. L.: Mater. Sci. Engn. 61 (1983) 101–109.10.1016/0025-5416(83)90191-XSearch in Google Scholar

10 Mozhi, T. A.; Clark, W. A. T.; Nishimoto, K.; Johnson, W. B.; Macdonald, D. D.: Corrosion 41 (1985) 555–559.10.5006/1.3582983Search in Google Scholar

11 Sundman, B.; Jansson, B.; Andersson, J.-O.: CALPHAD 9 (1985) 153.10.1016/0364-5916(85)90021-5Search in Google Scholar

12 Betrabet, H. S.; Nishimoto, K.; Wilde, B. E.; Clarke, W. A. T.: Corrosion 43 (1987) 77–84.10.5006/1.3583121Search in Google Scholar

13 Kikuchi, M.; Kajihara, M.; Frisk, K.: in: I. Fock, A. Hendry (eds) Proc. High Nitrogen Steels, Lille, France, 1988, The Institute of Metals (1989) 63–74.Search in Google Scholar

14 Beneke, R.; Sandenbergh, R. F.: Corrosion Sci. 29 (1989) 543–555.10.1016/0010-938X(89)90006-1Search in Google Scholar

15 Heubner, U.; Rockel, M.; Wallis, E.: Werkstoffe und Korrosion 40 (1989) 459–466.10.1002/maco.19890400802Search in Google Scholar

16 Rawers, J. C.; Dunning, J. S.; Asai, G.; Reed, R. P.: Metall. Trans. A 23A (1992) 2061–2068.10.1007/BF02647552Search in Google Scholar

17 Jargelius-Pettersson, R. F. A.: Scripta Metall. Mater. 28 (1993) 1399–1403.10.1016/0956-716X(93)90489-FSearch in Google Scholar

18 Qiu, C.: Metall. Trans. A 24A (1993) 2393–2409.10.1007/BF02646519Search in Google Scholar

19 Jargelius-Pettersson, R. F. A.: Scripta Metall. Mater. 30 (1994) 1233–1238.10.1016/0956-716X(94)90345-XSearch in Google Scholar

20 Hertzman, S.: Highly alloyed stainless steels – a Swedish perspective. Scandinavian Journal of Metallurgy 24 (1995) 140–146.Search in Google Scholar

21 Vanderschaeve, F.; Taillard, R.; Foct, J.: J. Mater. Sci. 30 (1995) 6035 – 6046.10.1007/BF01151525Search in Google Scholar

22 Machado, I. F.; Padilha, A. F.: Steel Res. 67 (1996) 285–290.10.1002/srin.199605492Search in Google Scholar

23 Simmons, J. W.: Mater. Sci. Engn. A207 (1996) 159–169.10.1016/0921-5093(95)09991-3Search in Google Scholar

Received: 1997-09-23
Published Online: 2021-12-27

© 1998 Carl Hanser Verlag, München

Downloaded on 16.10.2025 from https://www.degruyterbrill.com/document/doi/10.3139/ijmr-1998-0032/html
Scroll to top button