Home Numerical Simulation of Extrusion Coating
Article
Licensed
Unlicensed Requires Authentication

Numerical Simulation of Extrusion Coating

Contribution to the Understanding of Adhesion Mechanisms between Grafted Polypropylene and Aluminium
  • S. Devisme , J.-M. Haudin , J.-F. Agassant , D. Rauline and F. Chopinez
Published/Copyright: March 26, 2013
Become an author with De Gruyter Brill

Abstract

In packaging industry, many structures are produced by extrusion coating. In this process, a polymer film is extruded through a slit die, then stretched in air, coated on a substrate (paper, aluminium or steel foil) between a chill roll and a flexible pressure roll, and finally cooled on successive chill rolls. Due to their non-polar character, polypropylenes are not suitable for extrusion coating on metallic surfaces. Adhesive properties can be improved by grafting on the polymer chain a polar group like maleic anhydride which may react with the aluminium surface.

Our purpose was to develop a general model in order to predict the temperature field in the thickness of the multilayered structure along the stretching, laminating and cooling steps, and especially near the polymer/metal interface. This model includes crystallization kinetics and accounts carefully for the heat transfer coefficient with the successive rolls and surrounding air. Its predictions have been successfully compared to experimental temperature measurements along the coating line for various processing conditions (velocity, roll temperature, etc). Moreover, thermal history has a real impact on structure and morphology in the film. All these aspects are revealed by microscopic observations of thin microtomed sections of the film and X-ray diffraction experiments. Finally, adhesion properties of the laminate have been tested for the same process conditions. A good correlation has been established between adhesion properties and the thermal history experienced by the grafted polypropylene near the interface with aluminium before crystallization.


Mail address: J.-M. Haudin, Centre de Mise en Forme des Matériaux, UMR CNRS n° 7635, Ecole des Mines de Paris, BP 207, 06904 Sophia Antipolis Cedex, France. E-mail:

References

1d'Halewyn, S., Agassant, J.-F., Demay, Y.: Polym. Eng. Sci. 30, p. 335 (1990)10.1002/pen.760300604Search in Google Scholar

2Debbaut, B., Marchal, J.-M.: Z. Angew. Math. Phys.46, Special Issue, p. S679 (1995)Search in Google Scholar

3Silagy, D., Demay, Y., Agassant, J.-F.: Polym. Eng. Sci. 36, p. 2614 (1996)10.1002/pen.10661Search in Google Scholar

4Smith, S., Stolle, D.: Polym. Eng. Sci. 40, p. 1870 (2000)10.1002/pen.11319Search in Google Scholar

5Smith, S., Stolle, D.: Polym. Eng. Sci. 43, p. 1105 (2003)10.1002/pen.10094Search in Google Scholar

6Sollogoub, C., Demay, Y., Agassant, J.-F.: Intern. Polym. Process. 18, p. 80 (2003)10.3139/217.1725Search in Google Scholar

7Sakaki, K., Katsumoto, R., Kajiwara, T.: Polym. Eng. Sci. 36, p. 1821 (1996)10.1002/pen.10577Search in Google Scholar

8Thery, S., Legros, A., Balladon, P., in: Mechanics and Mechanisms of Damage Composites. Baptiste, D. (Ed.), Mechanical Engineering Publications Limited, London, p. 339 (1991)Search in Google Scholar

9Stralin, A., Hjertberg, T.: J. Adhes. Sci. Technol. 7, p. 1211 (1993)10.1163/156856193X00060Search in Google Scholar

10Cotto, D., Duffo, P., Haudin, J.-M.: Intern. Polym. Process. 4, p. 103 (1989)10.3139/217.890103Search in Google Scholar

11Billon, N., Barq, P., Haudin, J.-M.: Intern. Polym. Process. 6, p. 348 (1991)10.3139/217.910348Search in Google Scholar

12Duffo, P., Monasse, B., Haudin, J.-M.: J. Polym. Eng. 10, p. 151 (1991)10.1515/POLYENG.1991.10.1-3.151Search in Google Scholar

13Jay, F., Monasse, B., Haudin, J.-M.: Intern. J. Form. Proc. 1 p. 75 (1998)Search in Google Scholar

14Lamberti, G., Titomanlio, G.: Macromol. Symp. 185, p. 167 (2002)10.1002/1521-3900(200208)185:1<167::AID-MASY167>3.0.CO;2-8Search in Google Scholar

15Titomanlio, G., Lamberti, G.: Rheol. Act. 43, p. 146 (2004)10.1007/s00397-003-0329-4Search in Google Scholar

16Kumpinsky, E.: Ind. Eng. Chem. Res. 32, p. 2866 (1993)10.1021/ie00023a059Search in Google Scholar

17Trouilhet, Y., Morris, B. A., in: Polymers Laminations and Coatings Conference, Tappi Proceedings, p. 457 (1999)Search in Google Scholar

18Comien, P.: Thesis, Université de Haute Alsace, France (1987)Search in Google Scholar

19Thery, S., Jacquet, D., Mantel, M.: J. Adhes. 56, p. 1 (1996)10.1080/00218469608010495Search in Google Scholar

20Bistac, S., Vallat, M.-F., Schultz., J.: Appl. Spectrosc. 51, p. 1823 (1997)10.1366/0003702971939893Search in Google Scholar

21Schneider, B., Hennemann, O.-D.: J. Adhes. 78, p. 779 (2002)10.1080/00218460213837Search in Google Scholar

22Pearson, J. R. A.: Mechanical Principles of Polymer Melt Process. Pergamon Press, London (1966)Search in Google Scholar

23Sergent, J. Ph.: Thesis, Université Louis Pasteur, Strasbourg, France (1977)Search in Google Scholar

24Agassant, J.-F., Avenas, P., Sergent, J.-Ph., Carreau, P.: Polymer Processing Principles and Modeling. Hanser Publishers, Munich (1991)Search in Google Scholar

25Barq, P., Haudin, J.-M., Agassant, J.-F., Bourgin, P.: Intern. Polym. Process. 9, p. 350 (1994)10.3139/217.940350Search in Google Scholar

26Barq, P., Haudin, J.-M., Agassant, J.-F.: Intern. Polym. Process. 7, p. 334 (1992)10.3139/217.920334Search in Google Scholar

27Alaie, S. M., Papanastasiou, T. C.: Polym. Eng. Sci. 31, p. 67 (1991)10.1002/pen.760310203Search in Google Scholar

28Beaulne, M., Mitsoulis, E.: Intern. Polym. Process. 14, p. 261 (1999)10.3139/217.1554Search in Google Scholar

29Lamberti, G., Titomanlio, G., Brucato, V.: Chem. Eng. Sci. 56, p. 5749 (2001)10.1016/S0009-2509(01)00286-XSearch in Google Scholar

30Acierno, D., Di Maio, L.: Polym. Eng. Sci. 40, p. 108 (2000)10.1002/pen.11143Search in Google Scholar

31Ozawa, T.: Polymer12, p. 150 (1971)10.1016/0032-3861(71)90041-3Search in Google Scholar

32Monasse, B.: J. Mater. Sci. 30, p. 5002 (1995)10.1007/BF01154515Search in Google Scholar

33Tribout, C.: Thesis, Ecole des Mines de Paris, France (1993)Search in Google Scholar

34Blethen, C. S.: Tappi Papper Syn. Conf., p. 27 (1980)Search in Google Scholar

35Hieber, C. A.: Polym. Eng. Sci. 42, p. 1387 (2002)10.1002/pen.11039Search in Google Scholar

36Delaunay, D., Le Bot, P., Fulchiron, R.: Polym. Eng. Sci. 40, p. 1682 (2000)10.1002/pen.11300Search in Google Scholar

37Sridhar, L., Narh, K. A.: J. Appl. Polym. Sci. 75, p. 1776 (2000)10.1002/(SICI)1097-4628(20000401)75:14<1776::AID-APP12>3.0.CO;2-GSearch in Google Scholar

38Cheng, S. Z. D., Janimak, J. J. J., Rodriguez, J., in: Polypropylene Structure, Blends and Composites. Karger-Kocsis, J. (Ed.), Chapman&Hall, London (1995)Search in Google Scholar

39Hoffman, J. D., Frolen, L. J., Ross, G. S., Lauritzen, J. I.: J. Res. Nat. Bur. Std., 79 (A6), p. 671 (1975)10.6028/jres.079A.026Search in Google Scholar

40Monasse, B.: Thesis, Ecole des Mines de Paris (1982)Search in Google Scholar

Received: 2006-4-7
Accepted: 2006-8-2
Published Online: 2013-03-26
Published in Print: 2007-03-01

© 2007, Carl Hanser Verlag, Munich

Downloaded on 20.9.2025 from https://www.degruyterbrill.com/document/doi/10.3139/217.0038/pdf
Scroll to top button