The effect of austempering on the microstructure and mechanical properties of PM Fe-0.8c steel aloyed with copper and nickel
-
Hakan Gökmeşe
Abstract
The effects of austempering heat treatment on the microstructure and mechanical properties of sintered steel containing 3 % Cu and 3 % Ni powders with addition of 0.8 % graphite powders were examined. For this purpose, the powder mixtures containing 3 % Cu, 3 % Ni, and 0.8 % graphite powder were compacted under 700 MPa of pressure within molds in accordance with the standard tensile and impact test specimen dimensions. All of the green compacts were sintered under an argon (99.99 %) gas atmosphere for 20 min at 1 150 °C. The austempering heat treatments were applied to the sintered specimens for different periods ranging from 15 to 120 min in a salt bath at 350 °C in order to obtain a bainitic structure after the austenitization process at 850 °C. The hardness, tensile, and charpy impact tests were carried out at room temperature. It was found that there was a decrease in the hardness value depending on the austempering conditions; moreover, a significant increase was observed in the tensile and impact toughness values. Remarkable strength and ductility values were obtained with the austempering applied for 60–120 min.
References
[1] H.Gökmeşe, B.Bostan: J. of the Fac. of Eng. and Arc. of Gazi Uni.29 (2014) 289. 10.17341/gummfd.74781Search in Google Scholar
[2] C.Senderowski, D.Zasada, T.Durejko, Z.Bojar: Powder Technol.263 (2014) 96–103,. 10.1016/j.powtec.2014.04.090Search in Google Scholar
[3] R.Aminia, E.Salahinejad, M.J.Hadianfard, M.Marasi, T.Sritharan: Mater. Sci. Eng. A527 (2010) 1135–1142. 10.1016/j.msea.2009.09.061Search in Google Scholar
[4] G.Gustafsson, M.Nishida, H.A.Häggblad, H.Kato, P.Jonsén, T.Ogura: Powder Technol.268 (2014) 293–305. 10.1016/j.powtec.2014.08.060Search in Google Scholar
[5] I.Cristofolini, A.Molinari, G.Pederzini, A.Rambelli: Powder Technol.295 (2016) 284–295. 10.1016/j.powtec.2016.03.045Search in Google Scholar
[6] E.Hryha, C.Gierl, L.Nyborg, H.Danninger, E.Dudrova: Appl. Surf. Sci.256 (2010) 3946–3961. 10.1016/j.apsusc.2012.12.155Search in Google Scholar
[7] H.Khorsand, S.M.Habibi, H.Y.Oozbashizadea, K.Janghorban, S.M.S.Reihani, H. RahmaniSeraji, M.Ashtari: Mater. Des.23 (2002) 667–670. 10.1016/S0261-3069(02)00046-8Search in Google Scholar
[8] G.Straffelini, M.Benedetti, V.Fontanari: Mater. Des.61 (2014) 101–108. 10.1016/j.matdes.2014.04.027Search in Google Scholar
[9] S.Tekeli, A.Güral: Mater. Des.28 (2007) 1353–1357. 10.1016/j.matdes.2006.01.022Search in Google Scholar
[10] S.Tekeli, A.Güral: Mater. Sci. Eng. A406 (2005) 172–179. 10.1016/j.msea.2005.07.019Search in Google Scholar
[11] A.Basu, J.Chakraborty, S.M.Shariff, G.Padmanabham, S.V.Joshi, G.Sundararajan, J. DuttaMajumdar, I.Manna: Scr. Mater.56 (2007) 887–890. 10.1016/j.scriptamat.2007.01.029Search in Google Scholar
[12] M.Ay, U.Çaydaş, A.Hasçalık: Elect. J. of Mach. Tech.3 (2006) 25–31.Search in Google Scholar
[13] Ö.F.Murathan, V.Kılıçlı: J. of Polyt.2 (2016) 115–128.Search in Google Scholar
[14] Y.H.Wang, F.C.Zhang, T.S.Wang: Scr. Mater.68 (2013) 763–766. 10.1016/j.scriptamat.2012.12.031Search in Google Scholar
[15] J.BoSeol, D.Raabe, P.Choi, Y.RokIm, C.G.Park: Acta Mater.60 (2012) 6183–6199. 10.1016/j.actamat.2012.07.064Search in Google Scholar
[16] L.Zhao, L.Qiana, J.Meng, Q.Zhoua, F.Zhang: Scr. Mater.112 (2016) 96–100. 10.1016/j.scriptamat.2015.09.022Search in Google Scholar
[17] Y.Huang, Q.Li, X.Huang, W.Huang: Mater. Sci. Eng. A678 (2016) 339–346. 10.1016/j.msea.2016.10.011Search in Google Scholar
[18] V.Sista, P.S.Satyam, S.Sahay: J. Mater. Sci.42 (2007) 9112–9115. 10.1007/s10853-007-2065-0Search in Google Scholar
[19] H.S.Hasan, M.Peet, H.Bhadeshia, S.Wood, E.Booth: Mater. Sci. Technol.26 (2010) 453–456. 10.1179/174328409X399029Search in Google Scholar
[20] M.H.Shaeri, H.Saghafian, S.G.Shabestari: J. Iron Steel Res. Int.17 (2010) 53–58. 10.1016/S1006-706X(10)60059-3Search in Google Scholar
[21] N.Saeidi, A.Ekrami: Mater. Sci. Technol.527 (2010) 5575–5581. 10.1016/j.msea.2010.05.015Search in Google Scholar
[22] C.Huang, C.Zhang, L.Jiang, Y.Yang, Y.Liu: J. Alloys Compd.660 (2016) 131–135. 10.1016/j.jallcom.2015.11.051Search in Google Scholar
[23] M.Campos, J.Sicre-Artalejo, J.J.Muñoz, J.M.Torralba: Metall. and Mater. Trans. A41 (2010) 1847–1854. 10.1007/s11661-010-0212-8Search in Google Scholar
[24] K.Wang, Z.Tan, G.Gao, B.Gao, X.Gui, R.Misra, B.Bai: Mater. Sci. Eng.675 (2016) 120–127. 10.1016/j.msea.2016.08.026Search in Google Scholar
[25] S.H.Kim, K.Kim, C.Bae, J.S.Lee, D.Suh: Met. Mater. Int Published Online: 13 March. 10.1007/s12540-018-0085-8Search in Google Scholar
[26] C.Liu, X.Cui and C.Yang: J. Mater. Eng. Perform. Published Online: 17 May (2018). 10.1007/s11665-018-3378-7Search in Google Scholar
[27] I.Hajiannia, M.Shamanian, M.Atapour, E.Ghassemali, N.Saeidi: Trans. Indian Inst. Met. Published Online: 22 January (2018). 10.1007/s12666-017-1271-ySearch in Google Scholar
[28] B.Wang, G.C.Barber, C.Tao, X.Sun, X.Ran: J. Mater. Res. Technol.2 (2018)198–202. 10.1016/j.jmrt.2017.08.011Search in Google Scholar
[29] M.Górny, E.Tyrała, G.Sikora, Ł.Roga: Met. Mater. Int.24 (2018) 95–100. 10.1007/s12540-017-7234-3Search in Google Scholar
[30] V.Dakre, D.R.Peshwe, S.U.Pathak, A.Likhite: Int. J. Miner. Metall. Mater.25 (2018) 770–778. 10.1007/s12613-018-1625-4Search in Google Scholar
[31] A.Güral, H.Hüdayim, M.Türkan: Phys. Met. Metall.119 (2018) 60–68,. 10.1134/S0031918X18010027Search in Google Scholar
[32] Rn.M.German: Sintering Science: A historical perspective, Metal powder industries federation, (2005).Search in Google Scholar
[33] D.Mandal, M.Ghosh, J.Pal, S.Ghosh, G.Das, Sn.K.Das: Mater. Des.54 (2014) 831–837. 10.1016/j.matdes.2013.09.005Search in Google Scholar
[34] K.S.Hwang, H.S.Huang: Int. J. Refract. Met. Hard Mater.22 (2004) 185–191. 10.1016/j.ijrmhm.2004.06.003Search in Google Scholar
[35] N.V.Stepanova, I.A.Bataev, Y.B.Kang, D.V.Lazurenko, A.A.Bataev, A.Razumakov, A.M.JorgeJunior: Mater. Charact.130 (2017) 260–269. 10.1016/j.matchar.2017.06.025Search in Google Scholar
[36] K.S.Narasimhan: Mater. Chem. Phys.67 (2001) 56–65. 10.1016/S0254-0584(00)00420-XSearch in Google Scholar
[37] S.Tekeli, A.Güral: Mater. Sci. Technol.23 (2007) 72–78. 10.1179/174328407X158442Search in Google Scholar
[38] İ.Uygur: J. Fac. Eng. Arch. Gazi Univ.22 (2007) 325–330.Search in Google Scholar
[39] T.Savaşkan: Material knowledge and examination, Seckin Publishing House (2011).Search in Google Scholar
[40] J.Zhao, T.Zhao, C.S.Houa, F.C.Zhang, T.S.Wang: Mater. Des.86 (2015) 215–220. 10.1016/j.matdes.2015.07.055Search in Google Scholar
[41] Y.Wang, Z.Yang, F.Zhang, D.Wu: Mater. Sci. Eng. A670 (2016) 166–177. 10.1016/j.msea.2016.05.084Search in Google Scholar
[42] O.Altuntaş, A.Güral: J.of Polyt.18 (2015) 107–112.Search in Google Scholar
© 2019, Carl Hanser Verlag, München
Articles in the same Issue
- Original Contributions
- Thermodynamic re-assessment of the binary Cr–Ta system down to 0 K
- Thermodynamic analysis of precipitation behavior of M23C6 carbide in Nimonic 105 superalloy
- Texture evolution of magnesium alloy AZ31 during high temperature tensile deformation
- Effect of reciprocating extrusion temperature and passes on the microstructural evolution of Mg-5Sn-1Si-0.8Y alloy
- Constitutive modeling of flow behavior of CuZn39Pb2 alloy under hot working conditions
- The effect of austempering on the microstructure and mechanical properties of PM Fe-0.8c steel aloyed with copper and nickel
- Enhancing the microstructure and grain refining performance of Al-5Ti-1B master alloy by a gas atomization process
- Aging response investigation of 2017 Al alloy processed by gravity and squeeze casting
- Die-casting aluminum alloys for high-efficiency thermal radiation components
- Wear and corrosion of in-situ formed Al3Zr aluminide reinforced Al3003 surface composite
- Magnesium aluminate spinel ceramics infiltrated with lanthanum-glass for dental applications
- Short Communications
- Influence of pre-rolling on microstructural evolution of non-basal textured magnesium alloy
Articles in the same Issue
- Original Contributions
- Thermodynamic re-assessment of the binary Cr–Ta system down to 0 K
- Thermodynamic analysis of precipitation behavior of M23C6 carbide in Nimonic 105 superalloy
- Texture evolution of magnesium alloy AZ31 during high temperature tensile deformation
- Effect of reciprocating extrusion temperature and passes on the microstructural evolution of Mg-5Sn-1Si-0.8Y alloy
- Constitutive modeling of flow behavior of CuZn39Pb2 alloy under hot working conditions
- The effect of austempering on the microstructure and mechanical properties of PM Fe-0.8c steel aloyed with copper and nickel
- Enhancing the microstructure and grain refining performance of Al-5Ti-1B master alloy by a gas atomization process
- Aging response investigation of 2017 Al alloy processed by gravity and squeeze casting
- Die-casting aluminum alloys for high-efficiency thermal radiation components
- Wear and corrosion of in-situ formed Al3Zr aluminide reinforced Al3003 surface composite
- Magnesium aluminate spinel ceramics infiltrated with lanthanum-glass for dental applications
- Short Communications
- Influence of pre-rolling on microstructural evolution of non-basal textured magnesium alloy