Home Constitutive modeling of flow behavior of CuZn39Pb2 alloy under hot working conditions
Article
Licensed
Unlicensed Requires Authentication

Constitutive modeling of flow behavior of CuZn39Pb2 alloy under hot working conditions

  • Jing Yin , Shiqing Wu , Zhenlun Song , Cheng Xu and Feng Shen
Published/Copyright: August 22, 2019
Become an author with De Gruyter Brill

Abstract

CuZn39Pb2 is a typical forged copper alloy widely used in various hot-forged valve bodies because of its super plasticity, high strength, and corrosion resistance. In this work, the deformation behavior of CuZn39Pb2 alloy at temperatures and strain rates of 650–750 °C and from 0.1 s−1 to 10 s−1 are investigated by isothermal hot compression tests on a Gleeble 3800 thermomechanical simulator. The experimental data are used to develop constitutive equations based on the Arrhenius-type equation. In the constitutive equations, the effects of true strain, deformation temperature, and strain rate on flow stress are incorporated and represented by the Zener–Hollomon parameter. The flow stress predicted by the constitutive equations agrees well with the experimental stress, which can be used in the finite-element simulation study of hot-forged CuZn39Pb2 alloy valve body.


*Correspondence address, Jing Yin, College of Mechanical Engineering, Ningbo University of Technology, No. 201, Fenghua Road, Jiangbei District, Ningbo, 315211, P.R. China, Tel.: +86057482351508, Fax: +86057482351508, E-mail:

References

[1] H.Y.Tang, M.S.Yang, W.J.Meng, J.S.Li: Chin. J. Eng.38 (2016) 77. 10.13374/j.issn2095-9389.2016.01.011Search in Google Scholar

[2] A.A.Rogovoy, N.K.Salikhova: Solid State Phenom.243 (2016) 75. 10.4028/www.scientific.net/SSP.243.75Search in Google Scholar

[3] X.Y.Wang, C.Z.Huang, B.Zou, H.L.Liu, H.T.Zhu, J.Wang: Mater. Sci. Eng. A580 (2013) 385. 10.1016/j.msea.2013.05.062Search in Google Scholar

[4] J.Liu, Z.S.Cui, C.X.Li: Comput. Mater. Sci.41 (2008) 375. 10.1016/j.commatsci.2007.04.024Search in Google Scholar

[5] G.Z.Quan, A.Mao, G.C.Luo, J.T.Liang, D.S.Wu, J.Zhou: Mater. Des.52 (2013) 98. 10.1016/j.matdes.2013.05.030Search in Google Scholar

[6] A.Abbasi-Bani, A.Zarei-Hanzaki, M.H.Pishbin, N.Haghdadi: Mech. Mater.71 (2014) 52. 10.1016/j.mechmat.2013.12.001Search in Google Scholar

[7] H.Mirzadeh: Mech. Mater.85 (2015) 66. 10.1016/j.mechmat.2015.02.014Search in Google Scholar

[8] T.Mirzaie, H.Mirzadeh, J.M.Cabrera: Mech. Mater.94 (2016) 38. 10.1016/j.mechmat.2015.11.013Search in Google Scholar

[9] Y.F.Li, Z.H.Wang, L.Y.Zhang, C.Luo, X.C.Lai: Trans. Nonferrous Met. Soc. China25 (2015) 1889. 10.1016/S1003-6326(15)63796-7Search in Google Scholar

[10] W.T.Jia, S.Xu, Q.C.Le, L.Fu, L.F.Ma, Y.Tang: Mater. Des.106 (2016) 120. 10.1016/j.matdes.2016.05.089Search in Google Scholar

[11] Y.C.Lin, Y.Ding, M.S.Chen, J.Deng: Mater. Des.52 (2013) 118. 10.1016/j.matdes.2013.05.036Search in Google Scholar

[12] W.Feng, Y.H.Fu: Mater. Des.57 (2014) 465. 10.1016/j.matdes.2014.01.014Search in Google Scholar

[13] Y.H.Xiao, C.Guo: Mater. Sci. Eng. A528 (2011) 508. 10.1016/j.msea.2011.03.050Search in Google Scholar

[14] A.Sanrutsadakorn, V.Uthaisangsuk, S.Suranuntchai, B.Thossatheppitak: Appl. Mech. Mater.249–250 (2012) 863. 10.4028/www.scientific.net/AMM.249-250.863Search in Google Scholar

[15] Z.Y.Ding, S.G.Jia, P.F.Zhao, D.Meng, K.X.Song: Mater. Sci. Eng., A570 (2013) 87. 10.1016/j.msea.2013.01.059Search in Google Scholar

[16] Y.C.Lin, D.X.Wen, J.Deng, G.Liu, J.Chen: Mater. Des.59 (2014) 115. 10.1016/j.matdes.2014.02.041Search in Google Scholar

[17] M.H.Wang, G.T.Wang, R.Wang: J. Cent. South Univ.23 (2016) 1863. 10.1007/s11771-016-3241-7Search in Google Scholar

[18] X.M.Chen, Y.C.Lin, D.X.Wen, J.L.Zhang, M.He: Mater. Des.57 (2014) 568. 10.1016/j.matdes.2013.12.072Search in Google Scholar

[19] Y.C.Lin, M.S.Chen, J.Zhong: Comput. Mater. Sci.42 (2008) 470. 10.1016/j.commatsci.2007.08.011Search in Google Scholar

[20] D.S.Qian, Y.Y.Peng, J.D.Deng: J. Cent. South Univ.24 (2017) 284. 10.1007/s11771-017-3429-5Search in Google Scholar

[21] J.L.Liu, W.D.Zeng, Y.C.Zhu, H.Q.Yu, Y.Q.Zhao: J. Mater. Eng. Perform.18 (2011) 101. 10.1007/s11665-015-1456-7Search in Google Scholar

[22] F.Yin, L.Hua, H.J.Mao, X.H.Han: Mater. Des.43 (2013) 393. 10.1016/j.matdes.2012.07.009Search in Google Scholar

[23] E.X.Pu, H.Feng, M.Liu, W.J.Zheng, H.Dong, Z.G.Song: J. Iron Steel Res. Int.23 (2016) 178. 10.1016/S1006-706X(16)30031-0Search in Google Scholar

Received: 2018-12-10
Accepted: 2019-03-25
Published Online: 2019-08-22
Published in Print: 2019-09-16

© 2019, Carl Hanser Verlag, München

Downloaded on 12.10.2025 from https://www.degruyterbrill.com/document/doi/10.3139/146.111804/html
Scroll to top button