Home Magnesium aluminate spinel ceramics infiltrated with lanthanum-glass for dental applications
Article
Licensed
Unlicensed Requires Authentication

Magnesium aluminate spinel ceramics infiltrated with lanthanum-glass for dental applications

  • Paula Cipriano da Silva , Roberto de Oliveira Magnago , Fernanda de Assis Baião Miranda Pereira , Kurt Strecker , Bruno Galvão Simba and Claudinei dos Santos
Published/Copyright: August 22, 2019
Become an author with De Gruyter Brill

Abstract

In this work, porous ceramic substrates based on magnesium aluminate spinel (MAS), Mg2Al2O4, were infiltrated with a lanthanum-rich glass for applications as dental ceramic material. The substrates were fabricated by uniaxial compaction of the spinel powder at 100 MPa for 60 s and sintering at 1 550 °C, 1 600 °C or 1 650 °C for 2 h. The porosity of the substrates after sintering varied between 17 vol.% and 24 vol.%. The substrates were then infiltrated with a lanthanum-rich glass at 1 140 °C for 2 h. After infiltration, dense ceramics were obtained, while hardness, fracture toughness and flexural strength varied from 850 to 1 000 HV, 2.8 to 3.5 MPa · m1/2 and 235 to 305 MPa, respectively, as a function of glass content. Theoretical calculations indicate that the amount of infiltrated secondary glassy phase should be about 17 vol.%, in order to obtain the highest crack propagation resistance.


*Correspondence address, Roberto Oliveira Magnago, Faculty of Technology, Rio de Janeiro State University, Presidente Dutra Road – BR 116, km 298, Resende- R J, 27537-000, Brazil, Tel.: +552499848-8196, E-mail:

References

[1] K.J.Anusavice Phillips’: Science of Dental Materials, Elsevier Science, USA, 11th ed. (2003), 832p.Search in Google Scholar

[2] W.R.Raymond, K.Li, T.W.Chow, J.P.Matinlinna: J. Prosthodont. Res.58 (2014) 208216. PMid:25172234; 10.1016/j.jpor.2014.07.003Search in Google Scholar

[3] R.G.Craing: Restorative Dental Materials, 10th Ed.Harcouret Brace (1998) 584p.Search in Google Scholar

[4] I.Denry, J.A.Holloway: Materials3 (2010) 351368. 10.3390/ma3010351Search in Google Scholar

[5] A.S.Rizkalla, D.W.Jones: Dent. Mater.20 (2004) 207221. 10.1016/S0109-5641(03)00093-9Search in Google Scholar

[6] M.Guazatto, M.Albakry, S.P.Ringer, M.V.Swain: Dent. Mater.20 (2004) 449456. PMid:15081551; 10.1016/j.dental.2003.05.002Search in Google Scholar

[7] I.Denry, J.R.Kelly: Dent Mater.24 (2008) 299307. PMid:17659331; 10.1016/j.dental.2007.05.007Search in Google Scholar

[8] X.W.Huang, S.W.Wang, X.X.Huang: Ceram. Int.29 (2003) 765769. 10.1016/S0272-8842(02)00228-6Search in Google Scholar

[9] M.Salma, M.Fathy, M.V.Swain: Dent. Mater.34 (2018) 551559. PMid:29361309; 10.1016/j.dental.2017.12.010Search in Google Scholar

[10] I.Ganesh, S.Bhattacharjee, B.P.Saha, R.Johnson, Y.R.Mahajan: Ceram. Int.27 (2001) 773779. 10.1016/S0272-8842(01)00029-3Search in Google Scholar

[11] S.Sinhamahapatra, H.S.Tripathi, A.Ghosh: Ceram. Int.42 (2016) 51485152. 10.1016/j.ceramint.2015.12.035Search in Google Scholar

[12] D.Zhang, C.Li, N.Jiang, J.Gao, B.Touzo, W.Yuan: Ceram. Int.44 (2018) 99849990. 10.1016/j.ceramint.2018.03.056Search in Google Scholar

[13] D.Han, J.Zhang, P.Liu, G.Li, S.Wang: Ceram. Int.44 (2018) 31893194. 10.1016/j.ceramint.2017.11.089Search in Google Scholar

[14] JLiu, J.Li, L.Jiang: J. Alloy Compd.680 (2016) 133138. 10.1016/j.jallcom.2016.04.192Search in Google Scholar

[15] R.Sarkar, S.Sahoo: Ceram. Int.40 (2014) 1671916725. 10.1016/j.ceramint.2014.08.037Search in Google Scholar

[16] H.B.Lim, W.S.Cho, C.Y.Kim: Ceram. Int.38 (2012) 30693074. 10.1016/j.ceramint.2011.12.005Search in Google Scholar

[17] C.Mugoni, A.Licciulli, D.Diso, C.Siligardi: Ceram. Int.41 (2015) 1309013099. 10.1016/j.ceramint.2015.07.005Search in Google Scholar

[18] X.J.Sheng, H.Xu, Z.H.Jin, Y.L.Wang: Mater. Lett.58 (2004), 1750–1753. 10.1016/j.matlet.2003.10.062Search in Google Scholar

[19] Y.H.Sun, Y.F.Zhang, J.K.Guo: Ceram. Int.29 (2003) 229232. 10.1016/S0272-8842(02)00097-4Search in Google Scholar

[20] H.N.Yoshimura, A.Chimanski, P.F.Cesar: Dent. Mater.31 (2015) 11881197. PMid:26187531; 10.1016/j.dental.2015.06.015Search in Google Scholar PubMed

[21] JCPDS – Joint Committee on Powder Diffraction Standard. Inorganic Materials. Pensilvania: International Centre for Diffraction Data Swarthmore. (2004).Search in Google Scholar

[22] ASTM C1327-15, Standard Test Method for Vickers Indentation Hardness of Advanced Ceramics, American Society for Testing and Material – ASTM International, West Conshohocken, 110 (2015).Search in Google Scholar

[23] ASTM C1421-10. Standard Test Method for determination of fracture toughness of advanced ceramics at ambient temperature, American Society for Testing and Material – ASTM International, West Conshohocken133, (2010).Search in Google Scholar

[24] ISO 6872, Dentistry – Dental ceramics, International Standard Organization, 4th edition (2015).Search in Google Scholar

[25] ISO 10993-5, Biological evaluation of medical devices: Part 5. Tests for cytotoxicity: in vitro methods International Standard Organization, (1992).Search in Google Scholar

[26] C.Santos, S.Ribeiro, J.K.M.F.Daguano, S.O.Rogero, K.Strecker, C.R.M.Silva: Mater. Sci. Eng. C27 (2007) 148153. 10.1016/j.msec.2006.04.003Search in Google Scholar

[27] J.L.Shi, Z.L.Lu, J.K.Guo: J. Mater. Res.15 (2000) 727732. 10.1557/JMR.2000.0105Search in Google Scholar

[28] J.L.Shi, L.Li, J.K.Guo: J. Eur. Ceram. Soc.18 (1998) 20352043. 10.1016/S0955-2219(98)00157-5Search in Google Scholar

[29] C.Santos, R.C.Souza, A.F.Habibe, L.D.Maeda, M.J.R.Barboza, C.N.Elias: Mater. Sci. Eng. A485 (2008) 422427. 10.1016/j.msea.2007.06.009Search in Google Scholar

Received: 2018-08-10
Accepted: 2019-03-25
Published Online: 2019-08-22
Published in Print: 2019-09-16

© 2019, Carl Hanser Verlag, München

Downloaded on 12.10.2025 from https://www.degruyterbrill.com/document/doi/10.3139/146.111805/html
Scroll to top button