Home Surface morphology and phase stability of titanium irradiated with 168 MeV 136Xe ions
Article
Licensed
Unlicensed Requires Authentication

Surface morphology and phase stability of titanium irradiated with 168 MeV 136Xe ions

Paper presented at the “XIII Scientific Conference on Titanium and Titanium Alloys 2017”, 24–27 September 2017, Janów Podlaski, Poland
  • Mariusz Kaminski , Piotr Budzynski , Zbigniew Surowiec , Marek Wiertel and Vladimir A. Skuratov
Published/Copyright: July 27, 2018
Become an author with De Gruyter Brill

Abstract

A titanium sample was irradiated with Xe 168 MeV energy at fluences of 1 × 1014, 2.2 × 1014, and 5 × 1014 ions · m−2. Changes induced by the ions with irradiation were analysed with an atomic force microscope, scanning electron microscope, and X-ray diffractometer. The irradiation at a fluence of 1 × 1014 ions · cm−2 leads to formation of hillocks with a density of 9 × 106 hillocks · cm−2. An increase in the fluence value results in disappearance of the hillocks and formation of void–dislocation lines. The changes in the surface topography are accompanied by a change in the relative content of the hcp (α) and fcc phases. The substantial changes in the crystalline structure (increased content of the fcc phase, reduction of lattice constants, changes in stresses) resulted from irradiation at a fluence of 1 × 1014 ions · cm−2. Irradiation of massive titanium samples with xenon ions at a fluence of 168 MeV 1 × 1014 ions · cm−2 at room temperature leads to a transition of ∼10% of the hexagonally closed-packed phase – hcp (α) into a face centred cubic structure (the fcc phase). Higher Xe ion fluences contribute to further reduction of lattice constants and crystallite sizes as well as reduction of the phase fcc content and lower values of stresses. It has been found for the first time that irradiation at higher fluences leads to partial recovery of the hcp (α) phase. Irradiation changes the texture of∼50% of the fcc phase crystallites.


*Correspondence address, Kamiński Mariusz, MSc. Eng., Faculty of Mechanical Engineering, Lublin University of Technology, Nadbystrzycka str. 36, 20-618 Lublin, Poland, Tel.: +48517663623, E-mail:

References

[1] G.Lutjering, J.C.William: Titanium, Springer, New York (2007) 1350.Search in Google Scholar

[2] V.P.Pilyugin, Y.V.Khlebnikova, L.Y.Egorova, T.R.Suaridze, N.N.Resnina, A.M.Patselov: Phys. Met. Metallogr.116 (2015) 12031212. 10.1134/S0031918X15120066Search in Google Scholar

[3] Y.K.Vohra, P.T.Spencer: Phys. Rev. Lett.86 (2001) 30683071. 11290109 10.1103/PhysRevLett.86.3068Search in Google Scholar

[4] Y.Akahama, H.Kawamura, T. LeBihan: Phys. Rev. Lett.87 (2001) 275503. 11800892 10.1103/PhysRevLett.87.275503Search in Google Scholar

[5] R.Ahuja, L.Dubrovinsky, N.Dubrovinskaia, J.M.O.Guillen, M.Mattesini, B.Johansson, T. LeBichan: Phys. Rev. B69 (2004) 184102. 10.1103/PhysRevB.69.184102Search in Google Scholar

[6] D.Van Heerden, D.Josell, D.Shechtman: Acta Mat.44 (1996) 297306. 10.1016/1359-6454(95)00159-5Search in Google Scholar

[7] D.L.Zhang, D.Y.Ying: Mater. Lett.50 (2001) 149153. 10.1016/S0167-577X(00)00433-XSearch in Google Scholar

[8] P.Horodek, J.Dryzek, V.A.Skuratov: Vacuum.138 (2017) 1521. 10.1016/j.vacuum.2017.01.013Search in Google Scholar

[9] H.Dammak, H.A.Dunlop, D.Lesueur: Philos. Mag. A79 (1999) 147166. 10.1080/01418619908214280Search in Google Scholar

[10] S.Sadi, A.Paulenova, W.Loveland, P.R.Watson, J.P.Greene, S.Zhu, G.Zinkann: Nucl. Instr. Meth. in Phys. Res. B328 (2014) 7883. 10.1016/j.nimb.2014.02.008Search in Google Scholar

[11] P.Budzyński, M.Kamiński, Z.Surowiec: Przegląd Elektrotechniczny.92 (2016) 155157. 10.15199/48.2016.08.42Search in Google Scholar

[12] H.H.Anderson, P.Sigmund: Phys. Lett.15 (1965) 237. 10.1016/0031-9163(65)91228-XSearch in Google Scholar

[13] Y.Yamamura: Nucl. Instr. Meth.194 (1982) 515. 10.1016/0029-554X(82)90575-4Search in Google Scholar

[14] M.Toulemonde, C.Dufour, E.Paumier: Phys. Rev. B46 (1992) 14362. 10.1103/PhysRevB.46.14362Search in Google Scholar

[15] C.I.Tracy, J.M.Pray, M.Lang, D.Popov, C.Park, C.Trutman, R.C.Ewing: Nucl. Instr. Meth. in Phys. Res. B326 (2014) 169. 10.1016/j.nimb.2013.08.070Search in Google Scholar

[16] J.Krauser, J.H.Zollondz, A.Weidinger, C.Trautmann: J. Appl. Phys.94 (2003) 19591964. 10.1063/1.1587263Search in Google Scholar

[17] G.K.Wehner: Appl. Phys. Lett.43 (1983) 366367. 10.1063/1.94339Search in Google Scholar

[18] K.Yasuda, T.Yamamoto, M.Etoh, S.Kawasoe, S.Matsumura, N.Ishikawa: Int. J. Mater. Res.102 (2011) 10821088. 10.3139/146.110564Search in Google Scholar

[19] J.F.Ziegler, SRIM-2003, Nucl. Instr. Meth. B219–220 (2004). 10.1016/j.nimb.2004.01.208Search in Google Scholar

[20] H.M.Ritveld: J. Appl. Crystalogr.2 (1969) 65. 10.1107/S0021889869006558Search in Google Scholar

[21] C.Williamson, W.H.Hall: Acta Metalica1 (1953) 22. 10.1016/0001-6160(53)90006-6Search in Google Scholar

[22] V.Chawla, R.Jayaganthan, R.Chandra: Mater. Charact.59 (2008) 10151020. 10.1016/j.matchar.2007.08.017Search in Google Scholar

[23] F.C.Salvadom, F.Teixeira-Dias, S.M.Walley, L.J.Lea, J.B.Cardoso: Prog. Mat. Sci.88 (2017) 186231. 10.1016/j.pmatsci.2017.04.004Search in Google Scholar

Received: 2017-08-07
Accepted: 2018-01-29
Published Online: 2018-07-27
Published in Print: 2018-08-10

© 2018, Carl Hanser Verlag, München

Downloaded on 7.10.2025 from https://www.degruyterbrill.com/document/doi/10.3139/146.111653/html
Scroll to top button