Home Rapid synthesis of Mn3O4 powder from pyro-synthesis of ethylene glycol–metal nitrate precursor assisted by nitric acid
Article
Licensed
Unlicensed Requires Authentication

Rapid synthesis of Mn3O4 powder from pyro-synthesis of ethylene glycol–metal nitrate precursor assisted by nitric acid

  • Cristiane de Abreu Dias , Marcos A. L. Nobre and Mauro C. Lopes
Published/Copyright: March 12, 2015
Become an author with De Gruyter Brill

Abstract

The rapid synthesis of Mn3O4 powders by a two-step process of pyro-synthesis of ethylene glycol–metal nitrate precursor assisted by nitric acid is reported. A new strategy that accelerates the synthesis and allows obtaining highly pure crystalline Mn3O4 is discussed. The structural and morphological characteristics of the Mn3O4 powders are presented and discussed. The mechanism of formation of the Mn3O4 is also discussed. In comparison with other synthesis methods, the present method shows that the proposed route of synthesis has the main advantage of high production of the powder material in a very short time.


* Correspondence address, Dr. Cristiane de Abreu Dias, Technological Federal University of Paraná (UTFPR), Campus Dois Vizinhos Paraná, 85660-000, Brazil, Tel.: +554635368417, Fax: +554635368900, E-mail:

References

[1] S.Cimino, S.Colonna, S.De Rossi, M.Faticanti, L.Lisi, I.Pettiti, P.Porta: J. Catal.205 (2002) 309. 10.1006/jcat.2001.3441Search in Google Scholar

[2] H.Dhaouadi, O.Ghodbane, F.Hosni, F.Touati: ISRN Spectroscopy2012 (2012) 1. 10.5402/2012/174952Search in Google Scholar

[3] F.Nâamoune, B.Messaoudi, A.Kahoul, N.Cherchour, A.Pailleret, H.Takenouti: Ionics18 (2012) 365. 10.1007/s11581-011-0621-8Search in Google Scholar

[4] D.P.Dubal, R.Holze: J. Power Sources238 (2013) 274. 10.1016/j.jpowsour.2013.01.198Search in Google Scholar

[5] R.Song, S.Feng, H.Wang, C.Hou: J. Solid State Chem.202 (2013) 57. 10.1016/j.jssc.2013.03.015Search in Google Scholar

[6] Z.Y.Tian, P.M.Kouotou, N.Bahlawane, P.H.T.Ngamou: J. Phys. Chem. C117 (2013) 6218. 10.1021/jp309224mSearch in Google Scholar

[7] Y.Li, H.Tan, X.Y.Yang, B.Goris, J.Verbeeck, S.Bals, P.Colson, R.Cloots, G.V.Tendeloo, B.L.Su: Small7 (2011) 475. 10.1002/smll.201001403Search in Google Scholar

[8] A.Baykal, H.Kavas, Z.Durmus, M.Demir, S.Kazan, R.Topkaya, M.S.Toprak: Cent. Eur. J. Chem.8 (2010) 633. 10.2478/s11532-010-0037-8Search in Google Scholar

[9] E.Finocchio, G.Busca: Catal. Today70 (2001) 213. 10.1016/S0920-5861(01)00419-9Search in Google Scholar

[10] M.Anilkumar, V.Ravi: Mater. Res. Bull.40 (2005) 605. 10.1016/j.materresbull.2005.01.009Search in Google Scholar

[11] S.K.Apte, S.D.Naik, R.S.Sonawane, B.B.Kale, N.Pavaskar, A.B.Mandale, B.K.Das: Mater. Res. Bull.41 (2006) 647. 10.1016/j.materresbull.2005.08.028Search in Google Scholar

[12] D.P.Dubal, D.S.Dhawale, R.R.Salunkhea, S.M.Pawar, V.J.Fulari, C.D.Lokhande: J. Alloys Compd.484 (2009) 218. 10.1016/j.jallcom.2009.03.135Search in Google Scholar

[13] M.Salavati-Niasari, F.Davar, M.Mazaheri: Polyhedron27 (2008) 3467. 10.1016/j.poly.2008.04.015Search in Google Scholar

[14] F.Fievet, J.P.Largier, M.Figlarz: Mater. Res. Bull.32 (1989) 29. 10.1557/S0883769400060930Search in Google Scholar

[15] C.Feldmann: Adv. Funct. Mater.13 (2003) 101. 10.1002/adfm.200301005Search in Google Scholar

[16] J.Gim, V.Mathew, J.Lim, J.Song, S.Baek, J.Kang, D.Ahn, S.-J.Song, H.Yoon, J.Kim: Sci. Rep.2 (2012) 946. 10.1038/srep00946Search in Google Scholar PubMed PubMed Central

[17] J.Kang, V.Mathew, J.Gim, S.Kim, J.Song, W.B.In, J.Han, J.H.Lee, J.Kim: Sci. Rep.4 (2014) 4047. 10.1038/srep04047Search in Google Scholar PubMed PubMed Central

[18] J.Kang, S.Baek, V.Mathew, J.Gim, J.Song, H.Park, E.Chae, A.K.Rai, J.Kim: J. Mater. Chem.22 (2012) 20857. 10.1039/c2jm13689aSearch in Google Scholar

[19] J.Kang, J.Song, S.Kim, J.Gim, J.Jo, V.Mathew, J.Han, J.Kim: RSC Adv.3 (2013) 25640. 10.1039/c2ra21945jSearch in Google Scholar

[20] E.J.Mittemeijer, U.Welzel: Z. Kristallogr.223 (2008) 552. 10.1524/zkri.2008.1213Search in Google Scholar

[21] T.Rhadfi, L.Sicard, F.Testard, O.Taché, A.Atlamsani, E.Anxolabéhère: J. Phys. Chem. C116 (2012) 5515. 10.1021/jp212454mSearch in Google Scholar

[22] M.Wekesa, M.D.J.Uddin, H.F.Sobhi: Int. J. Chem. Res.2 (2011) 34.Search in Google Scholar

[23] F.Fiévet, R.Brayner, in: R.Brayner, F.Fiévet, T.Coradin (Eds.), Nanomaterials: A Danger or a Promise? Chap. 1, Springer, London (2013) 1. 10.1007/978.1-4471.4213.3_1Search in Google Scholar

[24] L.Poul, S.Amar, N.Jouini, F.Fievet: J. Sol-Gel Sci. Technol.26 (2003) 261. 10.1023/A:1020763402390Search in Google Scholar

[25] H.B.Park, Y.S.Hong, J.E.Yi, H.J.Kweon, S.J.Kim: Bull. Korean Chem. Soc.18 (1997) 612.Search in Google Scholar

[26] V.Prevot, C.Forano, J.P.Besse: Chem. Mater.17 (2005) 6695. 10.1021/cm050581xSearch in Google Scholar

[27] H.M.Ali, A.Briggs: Appl. Therm. Eng.49 (2012) 9. 10.1016/j.applthermaleng.2011.08.017Search in Google Scholar

[28] T.Rhadfi, L.Sicard, F.Testard, O.Taché, A.Atlamsani, E.Anxolabéhère: J. Phys. Chem. C116 (2012) 5515. 10.1021/jp212454mSearch in Google Scholar

[29] D.Larcher, G.Sudant, R.Patrice, J.-M.Tarascon: Chem. Mater.15 (2003) 3543. 10.1021/cm030048mSearch in Google Scholar

[30] M.Gunay, H.Sozeri, A.Baykal: J. Supercond. Novel Magn.25 (2012) 1929. 10.1007/s10948-012-1451-2Search in Google Scholar

[31] Z.-H.Wang, L.-X.Yuan, Q.-G.Shao, F.Huang, Y.-H.Huang: Mater. Lett.80 (2012) 110. 10.1016/j.matlet.2011.09.046Search in Google Scholar

[32] K.V.Sankar, D.Kalpana, R.K.Selvan: J. Appl. Electrochem.42 (2012) 463. 10.1007/s10800-012-0424-2Search in Google Scholar

[33] F.Davar, M.Salavati-Niasari, N.Mir, K.Saberyan, M.Monemzadeh, E.Ahmadi: Polyhedron29 (2010) 1747. 10.1016/j.poly.2010.02.026Search in Google Scholar

[34] Y.-F.Han, F.Chen, Z.-Y.Zhong, K.Ramesh, E.Widjaja, L.-W.Chen: Catal. Commun.7 (2006) 739. 10.1016/j.catcom.2006.08.006Search in Google Scholar

[35] J.Gao, M.A.Lowe, H.D.Abruna: Chem. Mater.23 (2011) 3223. 10.1021/cm200975xSearch in Google Scholar

[36] R.Mehdizadeh, L.A.Saghatforoush, S.Sanati: Superlattices Microstruct.52 (2012) 92. 10.1016/j.spmi.2012.03.017Search in Google Scholar

[37] S.Xing, Z.Zhou, Z.Ma, Y.Wu: Mater. Lett.65 (2011) 517. 10.1016/j.matlet.2010.10.082Search in Google Scholar

[38] H.Dhaouadi, A.Madani, F.Touati: Mater. Lett.64 (2010) 2395. 10.1016/j.matlet.2010.07.036Search in Google Scholar

[39] K.A.M.Ahmed, Q.Zeng, K.Wu, K.Huang: J. Solid State Chem.183 (2010) 744. 10.1016/j.jssc.2010.01.015Search in Google Scholar

[40] J.Du, Y.Gao, L.Chai, G.Zou, Y.Li, Y.Qian: Nanotechnology17 (2006) 4923. 10.1088/0957-4484/17/12/004Search in Google Scholar

[41] M.Ishii, M.Nakahira, T.Yamanaka: Solid State Commun.11 (1972) 209. 10.1016/0038-1098(72)91162-3Search in Google Scholar

[42] Z.Durmus, M.Tomas, A.Baykal, H.Kavas, T. GürkaynakAltnçekiçc, M.S.Toprak: Russ. J. Inorg. Chem.55 (2010) 1947. 10.1134/S0036023610120211Search in Google Scholar

[43] Y.C.Zhang, T.Qiao, X.Y.Hu, W.D.Zhou: J. Cryst. Growth280 (2005) 652. 10.1016/j.jcrysgro.2005.02.060Search in Google Scholar

[44] C.Matranga, L.Chen, M.Smith, E.Bittner, J.K.Johnson, B.Bockrath: J. Phys. Chem. B107 (2003) 12930. 10.1021/jp0364654Search in Google Scholar

[45] S.Ashoka, P.Chithaiah, C.N.Tharamani, G.T.Chandrappa: J. Exp. Nanosci.5 (2010) 285. 10.1080/17458080903495003Search in Google Scholar

[46] L.B.McCusker, F.Liebau, G.Engelhardt: Pure Appl. Chem.73 (2001) 381. 10.1351/pac200173020381Search in Google Scholar

[47] Y.Ren, Z.Ma, P.G.Bruce: Chem. Soc. Rev.41 (2012) 4909. 10.1039/c2cs35086fSearch in Google Scholar PubMed

[48] J.Trambukis, Z.A.Munir: J. Am. Ceram. Soc.73 (1990) 1240. 10.1111/j.1151-2916.1990.tb05186.xSearch in Google Scholar

[49] L.Sicard, J.M.Meins, C.Méthivier, F.Herbst, S.Ammar: J. Magn. Magn. Mater.322 (2010) 2634. 10.1016/j.jmmm.2010.03.016Search in Google Scholar

[50] Y.Zhao, C.Li, F.Li, Z.Shi, S.Feng: Dalton Trans.40 (2011) 583. 10.1039/c0dt01198cSearch in Google Scholar PubMed

Received: 2014-05-01
Accepted: 2014-11-04
Published Online: 2015-03-12
Published in Print: 2015-03-11

© 2015, Carl Hanser Verlag, München

Articles in the same Issue

  1. Contents
  2. Contents
  3. Original Contributions
  4. Phase equilibria studies of the “MnO”–Al2O3–SiO2 system in equilibrium with metallic alloy. Part 2: phase equilibria
  5. X-ray stress measurement from an imperfect Debye–Scherrer ring
  6. Effect of heat treatment on the microstructure and tensile properties of Ti-5Al-3Zr-4Mo-3V alloy
  7. Quantification of roping in aluminium sheet alloys for car body applications by combining 3D surface measurements with Fourier analysis
  8. Dissimilar friction stir welding between polycarbonate and AA 7075 aluminum alloy
  9. Evaluation of the corrosion resistance of plasma nitrided austenitic stainless steel
  10. Corrosion performance and microstructural response of A380 matrix alloy reinforced with sol–gel TiO2-coated SiC particles: a perspective on previous studies
  11. Role of chloride in the electrochemical behaviour of AZ31B Mg alloy
  12. Implications of solute super-saturation in growth of vaporisation-induced recrystallised grains during heat treatment in Ni-base superalloys
  13. Rapid synthesis of Mn3O4 powder from pyro-synthesis of ethylene glycol–metal nitrate precursor assisted by nitric acid
  14. Production of bioactive glass-derived scaffolds using citric acid porogen
  15. Short Communications
  16. Microstructure and mechanical properties of deformed Mg–Mn–Sn alloys
  17. Fast microwave synthesis and characterization of MgTi2O5
  18. Time dependent synthesis of crystalline Bi2S3 and its application as a sensitizer in SnO2 based solar cells
  19. Synthesis of cobalt-doped CdS (CdS:Co) by a simple and rapid microwave activated method and investigating optical properties
  20. People
  21. In Memoriam Volker Schumacher
  22. DGM News
  23. DGM News
Downloaded on 7.9.2025 from https://www.degruyterbrill.com/document/doi/10.3139/146.111176/html
Scroll to top button