Home Mechanical properties and microstructural changes of ultrafine-grained AA6063T6 during high-cycle fatigue
Article
Licensed
Unlicensed Requires Authentication

Mechanical properties and microstructural changes of ultrafine-grained AA6063T6 during high-cycle fatigue

  • Matthias Hockauf , Lothar W. Meyer , Thorsten Halle , Corinna Kuprin , Michael Hietschold , Steffen Schulze and Lutz Krüger
Published/Copyright: May 31, 2013
Become an author with De Gruyter Brill

Abstract

Fatigue behaviour and mechanical properties of peak-aged AA6063T6 with ultra-fine grain size, produced by equal channel angular extrusion, were evaluated with special emphasis on the microstructure before and after cyclic loading. The strength significantly increased with grain size reduction and is described by an exponential power-law constitutive relationship. A remarkable enhancement of fatigue life compared to commercial AA6063T6 with coarse grains was found in the high-cycle regime after the first two extrusions. Further extrusions eliminated this improvement. It is shown that the optimum fatigue performance correlates very well with the minimum tensile ductility. Electron backscatter diffraction revealed that the material behaviour can basically be attributed to the grain boundary characteristics. Low grain boundary misorientation angles yield the best fatigue performance in the ultrafine-grained microstructure.


Dedicated to Professor Eckard Macherauch on the occasion of the 80th anniversary of his birth

* Correspondence address, Dipl.-Ing. Matthias Hockauf, Chemnitz University of Technology, Erfenschlager Str. 73, D-09125 Chemnitz, Germany, Tel.: +4937153135432, Fax: +49371531800237, E-mail:

References

[1] R.Z.Valiev, in: M.J.Zehetbauer, R.Z.Valiev (Eds.), Nanomaterials by Severe Plastic Deformation, WILEY-VCH (2004) 109.10.1002/3527602461Search in Google Scholar

[2] M.Furukawa, Z.Horita, T.G.Langdon: Adv. Eng. Mater.3 (2001) 121.10.1002/1527-2648(200103)3:3<121::AID-ADEM121>3.0.CO;2-VSearch in Google Scholar

[3] V. M.Segal, V. I.Reznikov, A. E.Drobyshevskiy, V.I.Kopylov: Russ. Metall.1 (1981) 99.Search in Google Scholar

[4] V. M.Segal: Mater. Sci. Eng. A386 (2004) 269.10.3366/pah.2004.6.2.269Search in Google Scholar

[5] C.S.Chung, J.K.Kim, H.K.Kim, W.J.Kim: Mater. Sci. Eng.A337 (2002) 39.Search in Google Scholar

[6] L.W.Meyer, M.Hockauf, T.Halle, L.Krüger, M.Hietschold, S.Schulze: Werkstoffprüfung (2005) 219.Search in Google Scholar

[7] M.Furukawa, Z.Horita, T.G.Langdon: Mater. Sci. Eng.A332 (2002) 97.Search in Google Scholar

[8] R.E.Barber, T.Dudo, P.B.Yasskin, K.T.Hartwig: Scripta Mater.51 (2004) 373.10.1016/j.scriptamat.2004.05.022Search in Google Scholar

[9] L.W.Meyer, M.Hockauf, L.Krüger: Materialprüfung10 (2005) 601.Search in Google Scholar

[10] V.E.Panin, in: T.G.Lowe, R.Z.Valiev (Eds.), Investigation and Application of Severe Plastic Deformation, Kluwer (2000) 203.10.1007/978-94-011-4062-1_27Search in Google Scholar

[11] C.P.Chang, P.L.Sun, P.W.Kao: Acta Mater.48 (2000) 3377.10.1016/S1359-6454(00)00138-5Search in Google Scholar

[12] A.E.Romanov, in: M.J.Zehetbauer, R.Z.Valiev (Eds.), Nanomaterials by Severe Plastic Deformation, WILEY-VCH (2004) 215.10.1002/3527602461Search in Google Scholar

[13] V.M.Segal: Mater. Sci. Eng.A345 (2003) 36.Search in Google Scholar

[14] C.Y.Yu, P.L.Sun, P.W.Kao, C.P.Chang: Mater. Sci. Eng.A366 (2004) 310.Search in Google Scholar

[15] N.Gao, M.Starink, M.Furukawa, Z.Horita, C.Xu, T.G.Langdon: Mater. Sci. Eng. A410 (2005) 303.10.1016/j.msea.2005.08.075Search in Google Scholar

[16] N.Q.Chinh, Z.Horita, T.G.Langdon, in: M.J.Zehetbauer, R.Z.Valiev (Eds.), Nanomaterials by Severe Plastic Deformation, WILEY-VCH (2004) 87.10.1002/3527602461.ch2eSearch in Google Scholar

[17] E.A.Brandes, in: G.B.Brook (Ed.), Smithells Light Metals Handbook, Butterworth Heinemann, Oxford (1998) 23.Search in Google Scholar

[18] U.Krupp: Habilitationsschrift, Verlag der Universität Siegen (2004).Search in Google Scholar

[19] S.Suresh: Fatigue of Materials, Cambridge University Press (1998).10.1017/CBO9780511806575Search in Google Scholar

[20] R.Z.Valiev, R.K.Islamgaliev, I.V.Alexandrov: Prog. Mater. Sci.45 (2000) 103.10.1016/S0079-6425(99)00007-9Search in Google Scholar

[21] H.W.HöppelC.Xu, M.Kautz, N.Barta-Schreiber, T.G.Langdon, H.Mughrabi, in: M.J.Zehetbauer, R.Z.Valiev (Eds.), Nanomaterials by Severe Plastic Deformation, WILEY-VCH (2004) 677.10.1002/3527602461.ch12bSearch in Google Scholar

[22] H.Mughrabi, H.W.Höppel, M.Kautz, R.Z.Valiev: Z. Metallkd.94 (2003) 1079.Search in Google Scholar

[23] Z.F.Zhang, Z.G.Wang: Mater. Sci. Eng.A284 (2000) 285.Search in Google Scholar

[24] M.J.Starink, S.C.Wang, N.Gao, S.Ubhi, C.Xu, T.G.Langdon: Mater. Sci. Forum503–504 (2006) 937.10.4028/www.scientific.net/MSF.503-504.937Search in Google Scholar

Received: 2006-4-19
Accepted: 2006-7-12
Published Online: 2013-05-31
Published in Print: 2006-10-01

© 2006, Carl Hanser Verlag, München

Articles in the same Issue

  1. Contents
  2. Contents
  3. Editorial
  4. Herrn Prof. em. Dr. rer. nat. Dr.-Ing. E. h. mult. Prof. h. c. Dr. h. c. Eckard Macherauch zum 80. Geburtstag
  5. Basic
  6. Stability of residual stresses in longitudinally and transversely deep rolled sintered iron under quasistatic and cyclic loading
  7. Residual stresses in random-planar aluminium/Saffil® short-fibre composites deformed in different loading modes
  8. Thermal residual stress analysis in continuous Al2O3 fiber reinforced NiAl composites
  9. On the fatigue behavior of ultrafine-grained interstitial-free steel
  10. Laser Interference Metallurgy – using interference as a tool for micro/nano structuring
  11. On dynamic and static strain ageing in Cu-2at.% Mn polycrystals
  12. High thermal stability of mechanically-alloyed nanocrystalline Cu–Nb alloys
  13. Possibilities and limits in thermohydrogen processing of beta titanium alloy Timetal®10-2-3
  14. Applied
  15. Cube textured tapes for use in YBa2Cu3O7–δ-coated conductor applications
  16. Cavitation erosion of advanced ceramics in water
  17. Influence of tension–compression loading history on plastic deformation of Mg wrought alloy AZ31
  18. Microstructure and mechanical properties of the extruded Mg-alloys AZ31, AZ61, AZ80
  19. Mechanical properties and microstructural changes of ultrafine-grained AA6063T6 during high-cycle fatigue
  20. Analysis of failure behaviour of carbon/carbon composite made by chemical vapour infiltration considering fibre, matrix and interface properties
  21. Cooperating twin robots form a new X-ray diffractometer for stress analysis
  22. Grinding-induced microstructural gradients and residual stresses in the surface layers of carbon steel and pure tungsten
  23. Residual-stress-induced subsurface crack nucleation in titanium alloys
  24. Microstructure and fatigue strength of the roller-bearing steel 100Cr6 (SAE 52100) after two-step bainitisation and combined bainitic–martensitic heat treatment
  25. History
  26. Damage tolerance: fracture mechanics in design
  27. Description of flow curves over wide ranges of strain rate and temperature
  28. Mechanismen und Modellierung der Verformung und Schädigung keramischer Faserverbundwerkstoffe
  29. Notifications
  30. Personal
Downloaded on 23.9.2025 from https://www.degruyterbrill.com/document/doi/10.3139/146.101383/html
Scroll to top button