Home CFD analysis of a hydraulic valve for cavitating flow
Article
Licensed
Unlicensed Requires Authentication

CFD analysis of a hydraulic valve for cavitating flow

  • A. Dutta , P. Goyal , R. K. Singh and A. K. Ghosh
Published/Copyright: April 19, 2013
Become an author with De Gruyter Brill

Abstract

A successful design of high pressure hydraulic valves requires a thorough analysis of both velocity and pressure fields, with the aim of improving the geometry to avoid cavitation. Cavitation behavior prediction of hydraulic valves and its associated performance drop is of high interest for the manufacturers and for the users. The paper presents a CFD analysis of the flow inside a high pressure hydraulic valve. First, the analysis was carried out without using cavitation model (single phase). It was observed that absolute pressure was going below the vapor pressure. Hence, it was required to turn on the cavitation model. This model enables formation of vapor from liquid when the pressure drops below the vaporization pressure. Since the cavitation bubble grows in a liquid at low temperature, the latent heat of evaporation can be neglected and the system can be considered isothermal. Under these conditions the pressure inside the bubble remains practically constant and the growth of the bubble radius can be approximated by the simplified Rayleigh equation. For typical poppet valve geometry, ½ of computational domain is assumed, with pressure inlet and outlet boundary conditions, and a steady flow solution is computed. Because of the highly complex geometry of the hydraulic valve, the computational domain was meshed using unstructured grids using tetrahedral cells only. The paper presents a numerical investigation of the flow inside a hydraulic valve using commercial CFD code CFD-ACE. The aim of the study is to provide a good basis for future designing of the hydraulic valve. The result indicated the cavitation zones which in turn suggest needs of modification of present geometry.

Kurzfassung

Ein erfolgreiche Anordnung eines Hochdruckhydraulikventils erfordert eine sorgfältige Analyse der Geschwindigkeits- und Druckfelder mit dem Ziel, die Geometrie zu verbessern um so Kavitationen zu verhindern. Die Vorhersage des Kavitationsverhaltens hydraulischen Ventile und der damit verbundene Leistungsabfall ist von großem Interesse für Hersteller und Nutzer. Der vorliegende Beitrag stellt eine CDF Analyse einer Strömung innerhalb eines Hochdruckhydraulikventils vor. Zuerst wurde die Analyse ohne Anwendung eines Kavitationsmodells (einphasig) durchgeführt. Dabei wurde beobachtet, dass der absolute Druck unter dem Dampfdruck lag. Es war deshalb nötig, das Kavitationsmodell anzuwenden. Dieses Modell erlaubt die Bildung von Dampf aus der Flüssigkeit, wenn der Druck unter den Dampfdruck abfällt. Da die Kavitationsblasen in einer Flüssigkeit bei niedrigen Temperaturen wachsen, kann die latente Verdampfungswärme vernachlässigt werden und das System kann als isotherm betrachtet werden. Unter diesen Bedingungen bleibt der Druck im Innern der Blase praktisch konstant und der wachsende Blasenradius kann näherungsweise durch die vereinfachte Rayleigh Gleichung beschrieben werden. Für ein typisches Tellerventil wird die Hälfte des Modellbereichs angenommen, mit Randbedingungen für Eingangsdruck und Ausgangsdruck, und eine Lösung für stationäre Strömung wird berechnet. Wegen der hohen Komplexität des Hydraulikventils wurde für den Modellbereich ein unstrukturiertes Gitternetz mit tetrahedralen Elementen generiert. Der Beitrag beschreibt die numerische Untersuchung der Strömung innerhalb eines Hydraulikventils mit Hilfe des kommerziellen CFD Codes CFD-ACE. Ziel der Studie ist es, eine gute Grundlage für die zukünftige Auslegung eines Hydraulikventils zu schaffen. Die Ergebnisse zeigen, dass die derzeitige Geometrie modifiziert werden sollte.


E-mail:

References

1 Acosta, A. J.: Cavitation and Fluid Machinery. Proc. of Cavitation Conference, 1974, Heriot-Watt Univ. of Edinburgh, Scotland, pp. 383396Search in Google Scholar

2 Ahuja, V.; Hosangadi, A.; Arunajatesan, S.: Simulations of caviting flows using hybrid unstructured meshes. J. Fluids Engg.123 (2001) 33133910.1115/1.1362671Search in Google Scholar

3 Alajbegovic, A.; Meister, G.; Greif, D.; Basara, B.: Three phase cavitating flows in high pressure swirl injectors. In Fourth International Conference on Multiphase Flow. ICMF, 2001Search in Google Scholar

4 Ancusa, V.: A Theoretical Method for Determination of the Cavitational Bubble Development in a Flow Past a Profiled Body. Proceedings of the 4th Conference on Hydraulic Machinery and Hydrodynamics, Timisoara, 1994, Vol. 2, p. 7380.Search in Google Scholar

5 Arndt, R. E. A.: Cavitation in Fluid Machinery and Hydraulic Structures. Ann. Rev. of Fluid Mech.13 (1981) 27332810.1146/annurev.fl.13.010181.001421Search in Google Scholar

6 Bernad, S.; Susan-Resiga, R.; Anton, I.; Ancusa, V.: Numerical Simulation of Cavitating Flow in Hydraulic Poppet Valve – part II. 2nd Southeastern Europe Fluent Users Group Meeting, 31 October-2 November 2001, Bucuresti, România (on CD-ROM)Search in Google Scholar

7 Billet, M. L.: Cavitation nuclei measurements – a review. Cavitation and Multiphase Flow Forum, 1985, Albuquerque, N.M.Search in Google Scholar

8 Brennen, C. E.: Cavitation and Bubble Dynamics. Oxford University Press, 1995Search in Google Scholar

9 Ceccio, S. L.; Brennen, C. E.: Observations of the Dynamics and Acoustics of Traveling Bubble Cavitation. J. Fluid Mechanics223 (1991) 63366010.1017/S0022112091000630Search in Google Scholar

10 CFD-ACE+ V2009.2 Modules Manual Part 1Search in Google Scholar

11 Chen, Y.; Heister, S.D.: Two-phase modelling of cavitated flows. In: ASME Cavitation and Multiphase Forum, Reno, Nevada, 1994. (Comput.Fluids 24 (1995) 799 – 806)Search in Google Scholar

12 Dumont, N.; Simonin, O.; Habchi, C.: Numerical simulation of cavitating flows in diesel injectors by a homogeneous equilibrium modeling approach. CAV2001:session B6.005Search in Google Scholar

13 Beux, F.; Salvetti, M. V.; Ignatyev, A.; Li, D.; Merkle, C. and Sinibaldi, E.: A numerical study of non-cavitating and cavitating liquid flow around a hydrofoil. Mathematical Modelling and Numerical Analysis39 (2005) 57759010.1051/m2an:2005023Search in Google Scholar

14 Ganippa, L., Bark, G., Anderson, S., and Chomiak, J.: Comparison of cavitation phenomenon in transparent scaled-up single-hole diesel nozzles. Proceedings of the 4th International Symposium on Cavitation, June 20–23, 2001Search in Google Scholar

15 He, L.; Ruiz, F.: Effect of cavitation on flow and turbulence in plain orifices for high-speed atomization. Atom Sprays5 (1995) 56984Search in Google Scholar

16 Keller, A. P.; Rott, H. K.: The Effect of Flow Turbulence on Cavitation Inception. ASME FED Meeting, Vancouver, Canada, 1997Search in Google Scholar

17 Kueny, J. L.: Cavitation Modeling. Lecture Series: Spacecraft Propulsion, Von Karman Institute for Fluid Dynamics, 1993Search in Google Scholar

18 Martynov, S. B.; Mason, D. J.; Heikal, M. R: Numerical simulation of cavitation flows based on their hydrodynamic similarity. Accepted for publication in the International Journal of Engine ResearchSearch in Google Scholar

19 Nguyen-Schafer, H.; Sprafke, P.: Numerical Study on Interaction Effects of the Bubbles Induced by Air-Release and Cavitation in Hydraulic Systems. 10th Bath International Fluid Power Workshop, Bath, UK, 1997Search in Google Scholar

20 Nurick, W. H.: Orifice Cavitation and its Effect on Spray Mixing. J. of Fluids Engg.98 (1976) 68168710.1115/1.3448452Search in Google Scholar

21 Patankar, S. V.; Spalding, D. B.: A Calculation Procedure for Heat, Mass and Momentum Transfer in Three-dimensional Parabolic Flows. Int. J. Heat Mass Transfer15 (1972) 178710.1016/0017-9310(72)90054-3Search in Google Scholar

22 Plesset, M. S.: The dynamics of cavitation bubbles. Trans. ASME, J. Appl. Mechanics16 (1949) 228231Search in Google Scholar

23 Qin, J.; Yu, S.; Lai, M.: Direct calculations of cavitating flows by the method of space-time conservation element and solution element. SAE 1999-01-3554, October 25–28, Toronto, Ontario, Canada, 199910.4271/1999-01-3554Search in Google Scholar

24 Senocak, I.; Shyy, W.: Computations of unsteady cavitation with a pressure-based method. Proceedings of ASME FEDSM 2003-450009, July 6–10, Honolulu, Hawaii, USA, 200310.1115/FEDSM2003-45009Search in Google Scholar

25 Shin, B.: Numerical analysis of unsteady cavitating flow by a homogeneous equilibrium model. 31st AIAA Fluid Dynamics Conference and Exhibition, June 11–14, Anaheim, CA, 200110.2514/6.2001-2909Search in Google Scholar

26 Singhal, A.; Athavale, M.; Li, H.; Jiang, Y.: Mathematical basis and validation of the full cavitation model. Journal of Fluids Engineering124 (2002) 61762410.1115/1.1486223Search in Google Scholar

27 Singhal, A. K.; Vaidya, N.; Leonard, A. D.: Multi-Dimensional Simulation of Cavitating Flows Using a PDF Model for Phase Change. ASME FED Meeting, Paper No. FEDSM'97–3272, Vancouver, Canada, 1997Search in Google Scholar

28 Soteriou, C.; Andrews, R.; Smith, M.: Direct injection diesel sprays and the effect of cavitation and hydraulic flip on atomization. SAE Paper 950080, 199510.4271/950080Search in Google Scholar

29 Soteriou, C.; Smith, M.; Andrews, R.: Diesel injector laser light sheet illumination of the development of cavitation in orifices. Proc ImechE C529/018/98, 1998Search in Google Scholar

30 Soyama, H.; Ito, Y.; Ichioka, T.; Oba, R.: SEM Observations of Rapid Cavitation Erosion Arising in A Typical Centrifugal Pump. ASME FED, Vol. 10, 1991Search in Google Scholar

31 Stoffel, B.; Schuller, W.: Investigations Concerning the Influence of Pressure Distribution and Cavity Length on Hydrodynamic Cavitation Intensity. ASME Fluids Eng. Conf., Hilton Head, SC, 1995Search in Google Scholar

32 Tsujimoto, Y.;, Kamijo, K.; Watanabe, S.; Yoshida, Y.: A Non-Linear Calculation of Rotating Cavitation in Inducers. ASME FED194 (1994) 5358Search in Google Scholar

33 Tatschl, R.; Sarre, C.; Alajbegovic, A.; Winklhofer, E.: Diesel spray breakup modeling including multidimensional cavitating nozzle flow effects. ILASS-Europe September 11–13, Darmstadt, 2000Search in Google Scholar

34 Van doormaal, J. P.; Raithby, G. D.: Enhancements of the SIMPLE Method for Predicting Incompressible Fluid Flows. Numer. Heat Transfer7 (1984) 147163Search in Google Scholar

35 Wang, Y. C.; Brennen, C. E.: Shock Wave Development in the Collapse of a Cloud of Bubbles. ASME-FED194 (1994) 1519Search in Google Scholar

Received: 2011-04-27
Published Online: 2013-04-19
Published in Print: 2012-03-01

© 2012, Carl Hanser Verlag, München

Downloaded on 24.9.2025 from https://www.degruyterbrill.com/document/doi/10.3139/124.110176/html
Scroll to top button