Home Application of the spectral Green's function method for numerically solving discrete ordinates problems in cylindrical geometry
Article
Licensed
Unlicensed Requires Authentication

Application of the spectral Green's function method for numerically solving discrete ordinates problems in cylindrical geometry

  • H. Öztürk , F. Anlı and S. Güngör
Published/Copyright: April 5, 2013
Become an author with De Gruyter Brill

Abstract

The spectral Green's function (SGF) method is used to solve numerically the transport of neutrons in an infinite homogeneous cylindrical domain. In the method, the scattering of neutrons is assumed to be isotropic and the transport equation in cylindrical geometry is reduced to plane-like transport equation by using our reasonable approach. Then, the plane-like transport equation is solved by using the SGF method and the results are compared with those already obtained by the Diamond Difference (DD) scheme to check the accuracy of the results. The agreement of the results is good and it can be concluded that the SGF method is very effective for the numerical solution of the transport equation.

Kurzfassung

Die Methode der spektralen Greenfunktion (SGF) wird angewendet zur numerischen Lösung der Transportgleichung für Neutronen in einem infiniten homogenen zylindrischen Gebiet. Bei dieser Methode wird die Streuung von Neutronen als isotrop angenommen. Die Transportgleichung in Zylindergeometrie wird mit Hilfe des hier vorgeschlagenen Ansatzes reduziert auf eine ebene Transportgleichung. Diese wird dann mit Hilfe der SGF Methode gelöst. Zur Überprüfung der Genauigkeit werden die Ergebnisse verglichen mit den Ergebnissen, die mit dem „Diamond Difference (DD)“ Modell erhalten wurden. Die Übereinstimmung der Ergebnisse ist gut. Daraus ergibt sich, dass die SGF Methode ein sehr effektives Verfahren zur Lösung der Transportgleichung ist.


Osmaniye Korkut Ata University, Technical and Vocational School of Higher Education, 80000, Osmaniye/Turkey. E-mail:

References

1 Carlson, B. G.; Lathrop, K. D.: Transport theory – The method of discrete ordinates. In: Greenspan, H.; Kelber, C. N.; Okrent, D.: editors. Computing methods in reactor physics. New York, Gordon and Breach, 1968Search in Google Scholar

2 Pomraning, G. C.: The transport equation in general geometry. Nucl. Sci. Eng.101 (1989) 330Search in Google Scholar

3 Mitsis, G. J.: Transport solutions to the monoenergetic critical problems. Ph.D. Thesis, (1963), Argonne National Laboratory, ANL-6787 10.2172/4118021Search in Google Scholar

4 Fletcher, J. K.: The solution of the multigroup neutron transport equation using spherical harmonics. Nucl. Sci. Eng.34 (1983) 33Search in Google Scholar

5 Wu, Y.; Xie, Z.; Fischer, U.: A discrete ordinates nodal method for one-dimensional neutron transport calculation in curvilinear geometries. Nucl. Sci. Eng.133 (1999) 350Search in Google Scholar

6 Asadzadeh, M.: A finite element method for the neutron transport equation in an infinite cylindrical domain. SIAM J. Numer. Anal.35 (1998) 1299Search in Google Scholar

7 Siewert, C. E.; Thomas, J. R.Jr.: Neutron transport calculations in cylindrical geometry. Nucl. Sci. Eng.87 (1984) 107Search in Google Scholar

8 Khouaja, H.; Edwards, D. R.; Tsoulfanidis, N.: Spherical harmonics-finite element treatment of neutron transport in cylindrical geometry. Ann. Nucl. Energy24 (1997) 515Search in Google Scholar

9 Lee, C. E.; Fan, W. C. P.; Dias, M. P.: Analytical solution to the moment transport equations-II. Ann. Nucl. Energy12 (1985) 61310.1016/0306-4549(85)90013-1Search in Google Scholar

10 Wood, J.: A multigroup finite-element solution of the neutron transport equation-II, r-z geometry. Ann. Nucl. Energy12 (1985) 217Search in Google Scholar

11 Bell, G. I.; Glasstone, S.: Nuclear reactor theory. New York, VNR Company1972Search in Google Scholar

12 Barros, R.C.; Larsen, E. W.: A numerical method for one-group slab geometry discrete ordinates problems with no spatial truncation error. Nucl. Sci. Eng.104 (1990) 199Search in Google Scholar

13 Larsen, E. W.: The asymptotic diffusion limit of discretized transport problems. Nucl. Sci. Eng.112 (1992) 336Search in Google Scholar

14 Yavuz, M.: A one-d simplified discrete-ordinates method with no spatial truncation error. Ann. Nucl. Energy22 (1995) 203Search in Google Scholar

15 Anlı, F.: Spectral Green's function method for neutron transport: Isotropic, forward, and backward scattering in 1-D slab geometry. Ann. Nucl. Energy28 (2001) 1033Search in Google Scholar

16 Abreu, M.; Filho, H. A.; Barros, R. C.: A numerical method for multigroup slab-geometry eigenvalue problems in transport theory with no spatial truncation error. Transp. Theory Stat. Phys.25 (1996) 61Search in Google Scholar

17 Lewis, E. E.; Miller, W. F.Jr.: Computational Methods of Neutron Transport Theory. Illinois, American Nuclear Society, 1993Search in Google Scholar

18 Yasa, F.; Anlı, F.: An analytic and numerical solution with spectral Green's function method for transport equation in spherical geometry. J. Quant. Spectrosc. Radiat. Transfer90 (2005) 115Search in Google Scholar

19 Morel, J. E.; Lathrop, K. D.: Singular solutions, integral transport theory, and the Sn method. Nucl. Sci. Eng.147 (2004) 158Search in Google Scholar

Received: 2007-12-13
Published Online: 2013-04-05
Published in Print: 2008-09-01

© 2008, Carl Hanser Verlag, München

Downloaded on 26.9.2025 from https://www.degruyterbrill.com/document/doi/10.3139/124.100543/html
Scroll to top button