Home Ring-opening polymerisation of ɛ-caprolactone catalysed by Brønsted acids
Article
Licensed
Unlicensed Requires Authentication

Ring-opening polymerisation of ɛ-caprolactone catalysed by Brønsted acids

  • Li-Hui Yao EMAIL logo , Shuang-Xi Shao , Lan Jiang , Ning Tang and Jin-Cai Wu
Published/Copyright: June 24, 2014
Become an author with De Gruyter Brill

Abstract

Two new Brønsted acids [2,2′-ethylidene-bis (4,6-di-tert-butylphenol)] phosphoric acid (EDBPPOOH) and (3,3′,5,5′-tetra-tert-butylbiphenyl-2,2′-diol) phosphoric acid (TBPO-POOH) were synthesised and fully characterised by 1H NMR and 13C NMR spectra and mass spectra. The ringopening polymerisation (ROP) of ɛ-caprolactone (ɛ-CL) catalysed by the two Brønsted acids proceeded at 110°C without a solvent or at ambient temperature in toluene. Experimental results indicated that the two Brønsted acids were efficient catalysts for the ROP of ɛ-CL with moderate number-average molar mass (Mn) and narrow polydispersity indices (PDI). The catalytic activity of TBPO-POOH is higher than EDBP-POOH in the ROP of ɛ-CL. After benzyl alcohol was added, it was able to accelerate the polymerisation process. The polymerisation can also occur with the addition of water with a monomer/catalyst/initiator mole ratio of 100: 1: 1. The living polymerisation was ascertained by the linear relationships of the Mn vs. monomer conversion, then it was further confirmed by a second-feed experiment of a double monomer producing double Mn. A kinetic study of the relationships between monomer concentration and time revealed a first-order dependence on monomer concentration in the polymerisation. End-group analysis of 1H NMR spectra and electrospray-ionisation mass spectra suggests that the two Brønsted acids are capable of catalysing and initiating the ROP of ɛ-CL.

[1] Akiyama, T. (2007). Stronger Brønsted acids. Chemical Reviews, 107, 5744–5758. DOI: 10.1021/cr068374j. http://dx.doi.org/10.1021/cr068374j10.1021/cr068374jSearch in Google Scholar PubMed

[2] Cameron, D. J. A., & Shaver, M. P. (2011). Aliphatic polyester polymer stars: synthesis, properties and applications in biomedicine and nanotechnology. Chemical Society Reviews, 2011, 1761–1776. DOI: 10.1039/c0cs00091d. http://dx.doi.org/10.1039/c0cs00091d10.1039/C0CS00091DSearch in Google Scholar PubMed

[3] Casas, J., Persson, P. V., Iversen, T., & Córdova, A. (2004). Direct organocatalytic ring-opening polymerizations of lactones. Advanced Synthesis & Catalysis, 346, 1087–1089. DOI: 10.1002/adsc.200404082. http://dx.doi.org/10.1002/adsc.20040408210.1002/adsc.200404082Search in Google Scholar

[4] Chuma, A., Horn, H. W., Swope, W. C., Pratt, R. C., Zhang, L., Lohmeijer, B. G. G., Wade, C. G., Waymouth, R. M., Hedrick, J. L., & Rice, J. E. (2008). The reaction mechanism for the organocatalytic ring-opening polymerization of l-lactide using a guanidine-based catalyst: Hydrogen-bonded or covalently bound? Journal of the American Chemical Society, 130, 6749–6754. DOI: 10.1021/ja0764411. http://dx.doi.org/10.1021/ja076441110.1021/ja0764411Search in Google Scholar PubMed

[5] Connor, E. F., Nyce, G. W., Myers, M., Möck, A., & Hedrick, J. L. (2002). First example of N-heterocyclic carbenes as catalysts for living polymerization: Organocatalytic ring-opening polymerization of cyclic esters. Journal of the American Chemical Society, 124, 914–915. DOI: 10.1021/ja0173324. http://dx.doi.org/10.1021/ja017332410.1021/ja0173324Search in Google Scholar PubMed

[6] Couffin, A., Delcroix, D., Martín-Vaca, B., Bourissou, D., & Navarro, C. (2013). Mild and efficient preparation of block and gradient copolymers by methanesulfonic acid catalyzed ring-opening polymerization of caprolactone and trimethylene carbonate. Macromolecules, 46, 4354–4360. DOI: 10.1021/ma400916k. http://dx.doi.org/10.1021/ma400916k10.1021/ma400916kSearch in Google Scholar

[7] Coulembier, O., Dove, A. P., Pratt, R. C., Sentman, A. C., Culkin, D. A., Mespouille, L., Dubois, P., Waymouth, R. M., & Hedrick, J. L. (2005). Latent, thermally activated organic catalysts for the on-demand living polymerization of lactide. Angewandte Chemie, 117, 5044–5048. DOI: 10.1002/ange.200500723. http://dx.doi.org/10.1002/ange.20050072310.1002/ange.200500723Search in Google Scholar

[8] Coulembier, O., Lohmeijer, B. G. G., Dove, A. P., Pratt, R. C., Mespouille, L., Culkin, D. A., Benight, S. J., Dubois, P., Waymouth, R. M., & Hedrick, J. L. (2006a). Alcohol adducts of N-heterocyclic carbenes: Latent catalysts for the thermally-controlled living polymerization of cyclic esters. Macromolecules, 39, 5617–5628. DOI: 10.1021/ma0611366. http://dx.doi.org/10.1021/ma061136610.1021/ma0611366Search in Google Scholar

[9] Coulembier, O., Mespouille, L., Hedrick, J. L., Waymouth, R. M., & Dubois, P. (2006b). Metal-free catalyzed ring-opening polymerization of β-lactones: Synthesis of ambiphilic triblock copolymers based on poly(dimethylmalic acid). Macromolecules, 39, 4001–4008. DOI: 10.1021/ma060552n. http://dx.doi.org/10.1021/ma060552n10.1021/ma060552nSearch in Google Scholar

[10] Coulembier, O., Sanders, D. P., Nelson, A., Hollenbeck, A. N., Horn, H.W., Rice, J. E., Fujiwara, M., Dubois, P., & Hedrick, J. L. (2009). Hydrogen-bonding catalysts based on fluori nated alcohol derivatives for living polymerization. Angewandte Chemie International Edition, 48, 5170–5173. DOI: 10.1002/anie.200901006. http://dx.doi.org/10.1002/anie.20090100610.1002/anie.200901006Search in Google Scholar PubMed

[11] Csihony, S., Culkin, D. A., Sentman, A. C., Dove, A. P., Waymouth, R. M., & Hedrick, J. L. (2005). Single component catalyst/initiators for the organocatalytic ring-opening polymerization of lactide. Journal of the American Chemical Society, 127, 9079–9084. DOI: 10.1021/ja050909n. http://dx.doi.org/10.1021/ja050909n10.1021/ja050909nSearch in Google Scholar PubMed

[12] Culkin, D. A., Jeong, W., Csihony, S., Gomez, E. D., Balsara, N. P., Hedrick, J. L., & Waymouth, R. M. (2007). Zwitterionic polymerization of lactide to cyclic poly(lactide) by using Nheterocyclic carbene organocatalysts. Angewandte Chemie, 119, 2681–2684. DOI: 10.1002/ange.200604740. http://dx.doi.org/10.1002/ange.20060474010.1002/ange.200604740Search in Google Scholar

[13] Dechy-Cabaret, O., Martin-Vaca, B., & Bourissou, D. (2004). Controlled ring-opening polymerization of lactide and glycolide. Chemical Reviews, 104, 6147–6176. DOI: 10.1021/cr040002s. http://dx.doi.org/10.1021/cr040002s10.1021/cr040002sSearch in Google Scholar PubMed

[14] Dondoni, A., & Massi, A. (2008). Asymmetric organocatalysis: From infancy to adolescence. Angewandte Chemie International Edition, 47, 4638–4660. DOI: 10.1002/anie.200704684. http://dx.doi.org/10.1002/anie.20070468410.1002/anie.200704684Search in Google Scholar PubMed

[15] Dove, A. P., Pratt, R. C., Lohmeijer, B. G. G., Waymouth, R. M., & Hedrick, J. L. (2005). Thiourea-based bifunctional organocatalysts: Supramolecular recognition for living polymerization. Journal of the American Chemical Society, 127, 13798–13799. DOI: 10.1021/ja0543346. http://dx.doi.org/10.1021/ja054334610.1021/ja0543346Search in Google Scholar PubMed

[16] Dove, A. P., Pratt, R. C., Lohmeijer, B. G. G., Culkin, D. A., Hagberg, E. C., Nyce, G. W., Waymouth, R. M., & Hedrick, J. L. (2006). N-Heterocyclic carbenes: Effective organic catalyst for living polymerisation. Polymer, 47, 4018–4025. DOI: 10.1016/j.polymer.2006.02.037. http://dx.doi.org/10.1016/j.polymer.2006.02.03710.1016/j.polymer.2006.02.037Search in Google Scholar

[17] du Boullay, O. T., Marchal, E., Martin-Vaca, B., Cossío, F. P., & Bourissou, D. (2006). An activated equivalent of lactide toward organocatalytic ring-opening polymerization. Journal of the American Chemical Society, 128, 16442–16443. DOI: 10.1021/ja067046y. http://dx.doi.org/10.1021/ja067046y10.1021/ja067046ySearch in Google Scholar PubMed

[18] Gazeau-Bureau, S., Delcroix, D., Martín-Vaca, B., Bourissou, D., Navarro, C., & Magnet, S. (2008). Organo-catalyzed ROP of ɛ-caprolactone: Methanesulfonic acid competes with tri-fluoromethanesulfonic acid. Macromolecules, 41, 3782–3784. DOI: 10.1021/ma800626q. http://dx.doi.org/10.1021/ma800626q10.1021/ma800626qSearch in Google Scholar

[19] Jeong, W. H., Hedrick, J. L., & Waymouth, R. M. (2007). Organic spirocyclic initiators for the ring expansion polymerization of β-lactones. Journal of the American Chemical Society, 129, 8414–8415. DOI: 10.1021/ja072037q. http://dx.doi.org/10.1021/ja072037q10.1021/ja072037qSearch in Google Scholar PubMed

[20] Jeong, W. H., Shin, E. J., Culkin, D. A., Hedrick, J. L., & Waymouth, R. M. (2009). Zwitterionic polymerization: A kinetic strategy for the controlled synthesis of cyclic polylactide. Journal of the American Chemical Society, 131, 4884–4891. DOI: 10.1021/ja809617v. http://dx.doi.org/10.1021/ja809617v10.1021/ja809617vSearch in Google Scholar PubMed

[21] Kamber, N. E., Jeong, W. H., Waymouth, R. M., Pratt, R. C., Lohmeijer, B. G. G., & Hedrick, J. L. (2007). Organocatalytic ring-opening polymerization. Chemical Reviews, 107, 5813–5840. DOI: 10.1021/cr068415b. http://dx.doi.org/10.1021/cr068415b10.1021/cr068415bSearch in Google Scholar PubMed

[22] Kamber, N. E., Jeong, W. G., Gonzalez, S., Hedrick, J. L., & Waymouth, R. M. (2009). N-Heterocyclic carbenes for the organocatalytic ring-opening polymerization of ɛ-caprolactone. Macromolecules, 42, 1634–1639. DOI: 10.1021/ma802618h. http://dx.doi.org/10.1021/ma802618h10.1021/ma802618hSearch in Google Scholar

[23] Kumari, A., Yadav, S. K., & Yadav, S. C. (2010). Biodegradable polymeric nanoparticles based drug delivery systems. Colloids and Surfaces B: Biointerfaces, 75, 1–18. DOI: 10.1016/j.colsurfb.2009.09.001. http://dx.doi.org/10.1016/j.colsurfb.2009.09.00110.1016/j.colsurfb.2009.09.001Search in Google Scholar

[24] Liu, J. Y., & Liu, L. J. (2004). Ring opening polymerization of ɛ-caprolactone initiated by natural amino acids. Macromolecules, 37, 2674–2676. DOI: 10.1021/ma0348066. http://dx.doi.org/10.1021/ma034806610.1021/ma0348066Search in Google Scholar

[25] Lohmeijer, B. G. G., Pratt, R. C., Leibfarth, F., Logan, J. W., Long, D. A., Dove, A. P., Nederberg, F., Choi, J. S., Wade, C., Waymouth, R. M., & Hedrick, J. L. (2006). Guanidine and amidine organocatalysts for ring-opening polymerization of cyclic esters. Macromolecules, 39, 8574–8583. DOI: 10.1021/ma0619381. http://dx.doi.org/10.1021/ma061938110.1021/ma0619381Search in Google Scholar

[26] Makiguchi, K., Satoh, T., & Kakuchi, T. (2011). Diphenyl phosphate as an efficient cationic organocatalyst for controlled/living ring-opening polymerization of δ-valerolactone and ɛ-caprolactone. Macromolecules, 44, 1999–2005. DOI: 10.1021/ma200043x. http://dx.doi.org/10.1021/ma200043x10.1021/ma200043xSearch in Google Scholar

[27] Myers, M., Connor, E. F., Glauser, T., Möck, A., Nyce, G., & Hedrick, J. L. (2002). Phosphines: Nucleophilic organic catalysts for the controlled ring-opening polymerization of lactides. Journal of Polymer Science Part A: Polymer Chemistry, 40, 844–851. DOI: 10.1002/pola.10168. http://dx.doi.org/10.1002/pola.1016810.1002/pola.10168Search in Google Scholar

[28] Nederberg, F., Connor, E. F., Möller, M., Glauser, T., & Hedrick, J. L. (2001). New paradigms for organic catalysts: The first organocatalytic living polymerization. Angewandte Chemie International Edition, 40, 2712–2715. DOI: 10.1002/1521-3773(20010716)40:14<2712::aid-anie2712>3.0.co;2-z. http://dx.doi.org/10.1002/1521-3773(20010716)40:14<2712::AID-ANIE2712>3.0.CO;2-Z10.1002/1521-3773(20010716)40:14<2712::AID-ANIE2712>3.0.CO;2-ZSearch in Google Scholar

[29] Nyce, G. W., Glauser, T., Connor, E. F., Möck, A., Waymouth, R. M., & Hedrick, J. L. (2003). In-situ generation of carbenes: A general and versatile platform for organocatalytic living polymerization. Journal of the American Chemical Society, 125, 3046–3056. DOI: 10.1021/ja021084+. http://dx.doi.org/10.1021/ja021084+10.1021/ja021084+Search in Google Scholar

[30] Persson, P. V., Casas, J., Iversen, T., & Córdova, A. (2006). Direct organocatalytic chemoselective synthesis of a dendrimerlike star polyester. Macromolecules, 39, 2819–2822. DOI: 10.1021/ma0521710. http://dx.doi.org/10.1021/ma052171010.1021/ma0521710Search in Google Scholar

[31] Pratt, R. C., Lohmeijer, B. G. G., Long, D. A., Waymouth, R. M., & Hedrick, J. L. (2006a). Triazabicyclodecene: A simple bifunctional organocatalyst for acyl transfer and ring-opening polymerization of cyclic esters. Journal of the American Chemical Society, 128, 4556–4557. DOI: 10.1021/ja060662+. http://dx.doi.org/10.1021/ja060662+10.1021/ja060662+Search in Google Scholar

[32] Pratt, R. C., Lohmeijer, B. G. G., Long, D. A., Pontus Lundberg, P. N., Dove, A. P., Li, H. B., Wade, C. G., Waymouth, R. M., & Hedrick, J. L. (2006b). Exploration, optimization, and application of supramolecular thiourea-amine catalysts for the synthesis of lactide (co)polymers. Macromolecules, 39, 7863–7871. DOI: 10.1021/ma061607o. http://dx.doi.org/10.1021/ma061607o10.1021/ma061607oSearch in Google Scholar

[33] Rexin, O., & Mülhaupt, R. (2002). Anionic ring-opening polymerization of propylene oxide in the presence of phosphonium catalysts. Journal of Polymer Science Part A: Polymer Chemistry, 40, 864–873. DOI: 10.1002/pola.10163. http://dx.doi.org/10.1002/pola.1016310.1002/pola.10163Search in Google Scholar

[34] Save, M., Schappacher, M., & Soum, A. (2002). Controlled ring-opening polymerization of lactones and lactides initiated by lanthanum isopropoxide, 1. General aspects and kinetics. Macromolecular Chemistry and Physics, 203, 889–899. DOI: 10.1002/1521-3935(20020401)203:5/6〈889::aid-macp889〉3.0.co;2-o. http://dx.doi.org/10.1002/1521-3935(20020401)203:5/6<889::AID-MACP889>3.0.CO;2-O10.1002/1521-3935(20020401)203:5/6<889::AID-MACP889>3.0.CO;2-OSearch in Google Scholar

[35] Shibasaki, Y., Sanada, H., Yokoi, M., Sanda, F., & Endo, T. (2000). Activated monomer cationic polymerization of lactones and the application to well-defined block copolymer synthesis with seven-membered cyclic carbonate. Macromolecules, 33, 4316–4320. DOI: 10.1021/ma992138b. http://dx.doi.org/10.1021/ma992138b10.1021/ma992138bSearch in Google Scholar

[36] van der Vlugt, J. I., Hewat, A. C., Neto, S., Sablong, R., Mills, A. M., Lutz, M., Spek, A. L., Müler, C., & Vogt, D. (2004). Sterically demanding diphosphonite ligands-synthesis and application in nickel-catalyzed isomerization of 2-methyl-3-butenenitrile. Advanced Synthesis & Catalysis, 346, 993–1003. DOI: 10.1002/adsc.200303240. http://dx.doi.org/10.1002/adsc.20030324010.1002/adsc.200303240Search in Google Scholar

[37] Verkade, J. M. M., van Hemert, L. J. C., Quaedflieg, P. J. L. M., & Rutjes, F. P. J. T. (2008). Organocatalysed asymmetric Mannich reactions. Chemical Society Reviews, 37, 29–41. DOI: 10.1039/b713885g. http://dx.doi.org/10.1039/b713885g10.1039/B713885GSearch in Google Scholar

[38] Williams, C. K. (2007). Synthesis of functionalized biodegradable polyesters. Chemical Society Reviews, 2007, 1573–1580. DOI: 10.1039/b614342n. http://dx.doi.org/10.1039/b614342n10.1039/b614342nSearch in Google Scholar

[39] Wu, J. C., Yu, T. L., Chen, C. T., & Lin, C. C. (2006). Recent developments in main group metal complexes catalyzed/initiated polymerization of lactides and related cyclic esters. Coordination Chemistry Reviews, 250, 602–626. DOI: 10.1016/j.ccr.2005.07.010. http://dx.doi.org/10.1016/j.ccr.2005.07.01010.1016/j.ccr.2005.07.010Search in Google Scholar

[40] Zhang, L., Nederberg, F., Pratt, R. C., Waymouth, R. M., Hedrick, J. L., & Wade, C. G. (2007). Phosphazene bases: A new category of organocatalysts for the living ring-opening polymerization of cyclic esters. Macromolecules, 40, 4154–4158. DOI: 10.1021/ma070316s. http://dx.doi.org/10.1021/ma070316s10.1021/ma070316sSearch in Google Scholar

[41] Zhou, X., & Hong, L. Z. (2013). Controlled ring-opening polymerization of cyclic esters with phosphoric acid as catalysts. Colloid and Polymer Science, 291, 2155–2162. DOI: 10.1007/s00396-013-2950-9. http://dx.doi.org/10.1007/s00396-013-2950-910.1007/s00396-013-2950-9Search in Google Scholar

Published Online: 2014-6-24
Published in Print: 2014-10-1

© 2014 Institute of Chemistry, Slovak Academy of Sciences

Articles in the same Issue

  1. Chemical preparation and applications of silver dendrites
  2. Evaluation of antioxidant activity and DNA cleavage protection effect of naphthyl hydroxamic acid derivatives through conventional and fluorescence microscopic methods
  3. Modelling of ORL1 receptor-ligand interactions
  4. Kinetics of enantioselective liquid-liquid extraction of phenylglycine enantiomers using a BINAP-copper complex as chiral selector
  5. Diffusive transport of Cu(II) ions through thin ion imprinted polymeric membranes
  6. Magnetic mixed matrix membranes in air separation
  7. The use of impregnated perlite as a heterogeneous catalyst for biodiesel production from marula oil
  8. Nitrobenzene degradation by micro-sized iron and electron efficiency evaluation
  9. RP-HPLC-UV-ESI-MS phytochemical analysis of fruits of Conocarpus erectus L.
  10. Residue analysis of fosthiazate in cucumber and soil by QuEChERS and GC-MS
  11. Degradation of polylactide using basic ionic liquid imidazolium acetates
  12. Ring-opening polymerisation of ɛ-caprolactone catalysed by Brønsted acids
  13. Click synthesis by Diels-Alder reaction and characterisation of hydroxypropyl methylcellulose-based hydrogels
  14. Preparation and physical properties of chitosan-coated calcium sulphate whiskers
  15. A facile synthetic route for antineoplastic drug GDC-0449
  16. Two new frameworks for biphenyl-3,3′,5,5′-tetracarboxylic acid and nitrogen-containing organics
  17. Antioxidant and binding properties of methanol extracts from indigo plant leaves
  18. Dithiols as more effective than monothiols in protecting biomacromolecules from free-radical-mediated damage: in vitro oxidative degradation of high-molar-mass hyaluronan
Downloaded on 4.11.2025 from https://www.degruyterbrill.com/document/doi/10.2478/s11696-014-0585-z/html
Scroll to top button