Abstract
A novel ion imprinted polymeric membrane (IIPM) for copper (Cu) ions transport was prepared by a ion imprinting technique via cross-linking of blended chitosan (CS)/polyvinyl alcohol (PVA) using glutaraldehyde (GA) as the cross-linker and Cu ions as the template. The obtained IIPM was characterised and evaluated by scanning electron microscopy (SEM), energy dispersive X-ray (EDX) and permeation studies. Cavities of IIPM containing recognition sites for Cu ions were formed in the compact structure of the CS/PVA membrane which was prepared via the solution casting method. Under the optimum conditions, transport factor of the IIPM reached 2 when the permeation time was 18 h. Selective permeation of Cu ions versus nickel ions through the imprinted membrane was confirmed and a selectivity factor of 1.71 was obtained.
[1] Araki, K., Maruyama, T., Kamiya, N., & Goto, M. (2005). Metal ion-selective membrane prepared by surface molecular imprinting. Journal of Chromatography B, 818, 141–145. DOI: 10.1016/j.jchromb.2004.12.030. http://dx.doi.org/10.1016/j.jchromb.2004.12.03010.1016/j.jchromb.2004.12.030Search in Google Scholar PubMed
[2] Bogya, E. S., Barabás, R., Csavdári, C., Dejeu, V., & Bâldea, I. (2009). Hydroxyapatite modified with silica used for sorption of copper(II). Chemical Papers, 63, 568–573. DOI: 10.2478/s11696-009-0059-x. http://dx.doi.org/10.2478/s11696-009-0059-x10.2478/s11696-009-0059-xSearch in Google Scholar
[3] Branger, C., Meouche, W., & Margaillan, A. (2013). Recent advances on ion-imprinted polymers. Reactive & Functional Polymers, 73, 859–875. DOI: 10.1016/j.reactfunctpolym.2013.03.021. http://dx.doi.org/10.1016/j.reactfunctpolym.2013.03.02110.1016/j.reactfunctpolym.2013.03.021Search in Google Scholar
[4] Bulgariu, L., Bulgariu, D., & Macoveanu, M. (2012). Characteristics of sorption of uncomplexed and complexed Pb(II) from aqueous solutions onto peat. Chemical Papers, 66, 239–247. DOI: 10.2478/s11696-012-0149-z. http://dx.doi.org/10.2478/s11696-012-0149-z10.2478/s11696-012-0149-zSearch in Google Scholar
[5] Chen, A. H., Yang, C. Y., Chen, C. Y., Chen, C. Y., & Chen, C. W. (2009). The chemically crosslinked metal-complexed chitosans for comparative adsorptions of Cu(II), Zn(II), Ni(II) and Pb(II) ions in aqueous medium. Journal of Hazardous Materials, 163, 1068–1075. DOI: 10.1016/j.jhazmat.2008.07.073. http://dx.doi.org/10.1016/j.jhazmat.2008.07.07310.1016/j.jhazmat.2008.07.073Search in Google Scholar PubMed
[6] Chen, J. H., Li, G. P., Liu, Q. L., Ni, J. C., Wu, W. B., & Lin, J. M. (2010a). Cr(III) ionic imprinted polyvinyl alcohol/sodium alginate (PVA/SA) porous composite membranes for selective adsorption of Cr(III) ions. Chemical Engineering Journal, 165, 465–473. DOI: 10.1016/j.cej.2010.09.034. http://dx.doi.org/10.1016/j.cej.2010.09.03410.1016/j.cej.2010.09.034Search in Google Scholar
[7] Chen, R. R., Qin, L., Jia, M., He, X. W., & Li, W. Y. (2010b). Novel surface-modified molecularly imprinted membrane prepared with iniferter for permselective separation of lysozyme. Journal of Membrane Science, 363, 212–220. DOI: 10.1016/j.memsci.2010.07.026. http://dx.doi.org/10.1016/j.memsci.2010.07.02610.1016/j.memsci.2010.07.026Search in Google Scholar
[8] Chen, J. H., Lin, H., Luo, Z. H., He, Y. S., & Li, G. P. (2011). Cu(II)-imprinted porous film adsorbent Cu-PVA-SA has high uptake capacity for removal of Cu(II) ions from aqueous solution. Desalination, 277, 265–273. DOI: 10.1016/j.desal.2011.04.040. http://dx.doi.org/10.1016/j.desal.2011.04.04010.1016/j.desal.2011.04.040Search in Google Scholar
[9] Cheng, Z., Liu, X., Han, M., & Ma, W. (2010). Adsorption kinetic character of copper ions onto a modified chitosan transparent thin membrane from aqueous solution. Journal of Hazardous Materials, 182, 408–415. DOI: 10.1016/j.jhazmat.2010.06.048. http://dx.doi.org/10.1016/j.jhazmat.2010.06.04810.1016/j.jhazmat.2010.06.048Search in Google Scholar PubMed
[10] Hosseini-Bandegharaei, A., Karimzadeh, M., Sarwghadi, M., Heydarbeigi, A., Hosseini, S. H., Nedaie, M., & Shoghi, H. (2014). Use of a selective extractant-impregnated resin for removal of Pb(II) ion from waters and wastewaters: Kinetics, equilibrium and thermodynamic study. Chemical Engineering Research and Design, 92, 581–591. DOI: 10.1016/j.cherd.2013.10.007. http://dx.doi.org/10.1016/j.cherd.2013.10.00710.1016/j.cherd.2013.10.007Search in Google Scholar
[11] Kimaro, A., Kelly, L. A., & Murray, G. M. (2001). Molecularly imprinted ionically permeable membrane for uranyl ion. Chemical Communications, 2001, 1282–1283. DOI: 10.1039/b103077a. http://dx.doi.org/10.1039/b103077a10.1039/b103077aSearch in Google Scholar
[12] Koyano, T., Koshizaki, N., Umehara, H., Nagura, M., & Minoura, N. (2000). Surface states of PVA/chitosan blended hydrogels. Polymer, 41, 4461–4465. DOI: 10.1016/s0032-3861(99)00675-8. http://dx.doi.org/10.1016/S0032-3861(99)00675-810.1016/S0032-3861(99)00675-8Search in Google Scholar
[13] Li, N., & Bai, R. (2005). Copper adsorption on chitosan-cellulose hydrogel beads: behaviors and mechanisms. Separation and Purification Technology, 42, 237–247. DOI: 10.1016/j.seppur.2004.08.002. http://dx.doi.org/10.1016/j.seppur.2004.08.00210.1016/j.seppur.2004.08.002Search in Google Scholar
[14] Ma, X., Chen, R., Zheng, X., Youn, H., & Chen, Z. (2011). Preparation of molecularly imprinted CS membrane for recognizing naringin in aqueous media. Polymer Bulletin, 66, 853–863. DOI: 10.1007/s00289-011-0453-8. http://dx.doi.org/10.1007/s00289-011-0453-810.1007/s00289-011-0453-8Search in Google Scholar
[15] Peydayesh, M., Esfandyari, G. R., Mohammadi, T., & Alamdari, E. K. (2013). Pertraction of cadmium and zinc ions using a supported liquid membrane impregnated with different carriers. Chemical Papers, 67, 389–397. DOI: 10.2478/s11696-013-0310-3. http://dx.doi.org/10.2478/s11696-013-0310-310.2478/s11696-013-0310-3Search in Google Scholar
[16] Razavi, S., Sabetghadam, A., & Mohammadi, T. (2011). Dehydration of isopropanol by PVA-APTEOS/TEOS nanocomposite membranes. Chemical Engineering Research and Design, 89, 148–155. DOI: 10.1016/j.cherd.2010.06.004. http://dx.doi.org/10.1016/j.cherd.2010.06.00410.1016/j.cherd.2010.06.004Search in Google Scholar
[17] Salehi, E., Madaeni, S. S., Rajabi, L., Vatanpour, V., Derakhshan, A. A., Zinadini, S., Ghorabi, S., & Ahmadi Monfared, H. (2012). Novel chitosan/poly(vinyl) alcohol thin adsorptive membranes modified with amino functionalized multi-walled carbon nanotubes for Cu(II) removal from water: Preparation, characterization, adsorption kinetics and thermodynamics. Separation and Purification Technology, 89, 309–319. DOI: 10.1016/j.seppur.2012.02.002. http://dx.doi.org/10.1016/j.seppur.2012.02.00210.1016/j.seppur.2012.02.002Search in Google Scholar
[18] Shawky, H. A. (2009). Synthesis of ion-imprinting chitosan/PVA crosslinked membrane for selective removal of Ag(I). Journal of Applied Polymer Science, 114, 2608–2615. DOI: 10.1002/app.30816. http://dx.doi.org/10.1002/app.3081610.1002/app.30816Search in Google Scholar
[19] Vatanpour, V., Madaeni, S. S., Zinadini, S., & Rajabi, H. R. (2011). Development of ion imprinted technique for designing nickel ion selective membrane. Journal of Membrane Science, 373, 36–42. DOI: 10.1016/j.memsci.2011.02.030. http://dx.doi.org/10.1016/j.memsci.2011.02.03010.1016/j.memsci.2011.02.030Search in Google Scholar
[20] Wan Ngah, W. S., Teong, L. C., & Hanafiah, M. A. K. M. (2011). Adsorption of dyes and heavy metal ions by chitosan composites: A review. Carbohydrate Polymers, 83, 1446–1456. DOI: 10.1016/j.carbpol.2010.11.004. http://dx.doi.org/10.1016/j.carbpol.2010.11.00410.1016/j.carbpol.2010.11.004Search in Google Scholar
[21] Wang, X. J., Xu, Z. L., Bing, N. C., & Yang, Z. G. (2008). Preparation and characterization of metal-complex imprinted PVDF hollow fiber membranes. Journal of Applied Polymer Science, 109, 64–73. DOI: 10.1002/app.26805. http://dx.doi.org/10.1002/app.2680510.1002/app.26805Search in Google Scholar
[22] Wang, X., Zhang, L., Ma, C., Song, R., Hou, H., & Li, D. (2009). Enrichment and separation of silver from waste solutions by metal ion imprinted membrane. Hydrometallurgy, 100, 82–86. DOI: 10.1016/j.hydromet.2009.10.006. http://dx.doi.org/10.1016/j.hydromet.2009.10.00610.1016/j.hydromet.2009.10.006Search in Google Scholar
[23] Wang, Z., Wang, M., Wu, G., Shen, Y., & He, C. (2010). Ion imprinted sol-gel nanotubes membrane for selective separation of copper ion from aqueous solution. Microchimica Acta, 169, 195–200. DOI: 10.1007/s00604-010-0332-2. http://dx.doi.org/10.1007/s00604-010-0418-x10.1007/s00604-010-0332-2Search in Google Scholar
[24] Wang, W. S., Li, Y. B., Gao, B. J., Huang, X. W., Zhang, Y. Q., Xu, Y., & An, F. Q. (2013). Effective removal of Fe(II) impurity from rare earth solution using surface imprinted polymer. Chemical Engineering Research and Design, 91, 2759–2764. DOI: 10.1016/j.cherd.2013.05.006. http://dx.doi.org/10.1016/j.cherd.2013.05.00610.1016/j.cherd.2013.05.006Search in Google Scholar
[25] Zarghami, S., Kazemimoghadam, M., & Mohammadi, T. (2014). Cu(II) removal enhancement from aqueous solutions using ion-imprinted membrane technique. Chemical Papers, 68, 809–815. DOI: 10.2478/s11696-013-0509-3. http://dx.doi.org/10.2478/s11696-013-0509-310.2478/s11696-013-0509-3Search in Google Scholar
[26] Zhai, Y., Liu, Y., Chang, X., Ruan, X., & Liu, J. (2008). Metal ion-small molecule complex imprinted polymer membranes: Preparation and separation characteristics. Reactive & Functional Polymers, 68, 284–291. DOI: 10.1016/j.reactfunctpolym.2007.08.013. http://dx.doi.org/10.1016/j.reactfunctpolym.2007.08.01310.1016/j.reactfunctpolym.2007.08.013Search in Google Scholar
[27] Zhang, Y., Shan, X., & Gao, X. (2011). Development of a molecularly imprinted membrane for selective separation of flavonoids. Separation and Purification Technology, 76, 337–344. DOI: 10.1016/j.seppur.2010.10.024. http://dx.doi.org/10.1016/j.seppur.2010.10.02410.1016/j.seppur.2010.10.024Search in Google Scholar
© 2014 Institute of Chemistry, Slovak Academy of Sciences
Articles in the same Issue
- Chemical preparation and applications of silver dendrites
- Evaluation of antioxidant activity and DNA cleavage protection effect of naphthyl hydroxamic acid derivatives through conventional and fluorescence microscopic methods
- Modelling of ORL1 receptor-ligand interactions
- Kinetics of enantioselective liquid-liquid extraction of phenylglycine enantiomers using a BINAP-copper complex as chiral selector
- Diffusive transport of Cu(II) ions through thin ion imprinted polymeric membranes
- Magnetic mixed matrix membranes in air separation
- The use of impregnated perlite as a heterogeneous catalyst for biodiesel production from marula oil
- Nitrobenzene degradation by micro-sized iron and electron efficiency evaluation
- RP-HPLC-UV-ESI-MS phytochemical analysis of fruits of Conocarpus erectus L.
- Residue analysis of fosthiazate in cucumber and soil by QuEChERS and GC-MS
- Degradation of polylactide using basic ionic liquid imidazolium acetates
- Ring-opening polymerisation of ɛ-caprolactone catalysed by Brønsted acids
- Click synthesis by Diels-Alder reaction and characterisation of hydroxypropyl methylcellulose-based hydrogels
- Preparation and physical properties of chitosan-coated calcium sulphate whiskers
- A facile synthetic route for antineoplastic drug GDC-0449
- Two new frameworks for biphenyl-3,3′,5,5′-tetracarboxylic acid and nitrogen-containing organics
- Antioxidant and binding properties of methanol extracts from indigo plant leaves
- Dithiols as more effective than monothiols in protecting biomacromolecules from free-radical-mediated damage: in vitro oxidative degradation of high-molar-mass hyaluronan
Articles in the same Issue
- Chemical preparation and applications of silver dendrites
- Evaluation of antioxidant activity and DNA cleavage protection effect of naphthyl hydroxamic acid derivatives through conventional and fluorescence microscopic methods
- Modelling of ORL1 receptor-ligand interactions
- Kinetics of enantioselective liquid-liquid extraction of phenylglycine enantiomers using a BINAP-copper complex as chiral selector
- Diffusive transport of Cu(II) ions through thin ion imprinted polymeric membranes
- Magnetic mixed matrix membranes in air separation
- The use of impregnated perlite as a heterogeneous catalyst for biodiesel production from marula oil
- Nitrobenzene degradation by micro-sized iron and electron efficiency evaluation
- RP-HPLC-UV-ESI-MS phytochemical analysis of fruits of Conocarpus erectus L.
- Residue analysis of fosthiazate in cucumber and soil by QuEChERS and GC-MS
- Degradation of polylactide using basic ionic liquid imidazolium acetates
- Ring-opening polymerisation of ɛ-caprolactone catalysed by Brønsted acids
- Click synthesis by Diels-Alder reaction and characterisation of hydroxypropyl methylcellulose-based hydrogels
- Preparation and physical properties of chitosan-coated calcium sulphate whiskers
- A facile synthetic route for antineoplastic drug GDC-0449
- Two new frameworks for biphenyl-3,3′,5,5′-tetracarboxylic acid and nitrogen-containing organics
- Antioxidant and binding properties of methanol extracts from indigo plant leaves
- Dithiols as more effective than monothiols in protecting biomacromolecules from free-radical-mediated damage: in vitro oxidative degradation of high-molar-mass hyaluronan