Home Diffusive transport of Cu(II) ions through thin ion imprinted polymeric membranes
Article
Licensed
Unlicensed Requires Authentication

Diffusive transport of Cu(II) ions through thin ion imprinted polymeric membranes

  • Soheil Zarghami EMAIL logo , Toraj Mohammadi and Mansoor Kazemimoghadam
Published/Copyright: June 24, 2014
Become an author with De Gruyter Brill

Abstract

A novel ion imprinted polymeric membrane (IIPM) for copper (Cu) ions transport was prepared by a ion imprinting technique via cross-linking of blended chitosan (CS)/polyvinyl alcohol (PVA) using glutaraldehyde (GA) as the cross-linker and Cu ions as the template. The obtained IIPM was characterised and evaluated by scanning electron microscopy (SEM), energy dispersive X-ray (EDX) and permeation studies. Cavities of IIPM containing recognition sites for Cu ions were formed in the compact structure of the CS/PVA membrane which was prepared via the solution casting method. Under the optimum conditions, transport factor of the IIPM reached 2 when the permeation time was 18 h. Selective permeation of Cu ions versus nickel ions through the imprinted membrane was confirmed and a selectivity factor of 1.71 was obtained.

[1] Araki, K., Maruyama, T., Kamiya, N., & Goto, M. (2005). Metal ion-selective membrane prepared by surface molecular imprinting. Journal of Chromatography B, 818, 141–145. DOI: 10.1016/j.jchromb.2004.12.030. http://dx.doi.org/10.1016/j.jchromb.2004.12.03010.1016/j.jchromb.2004.12.030Search in Google Scholar PubMed

[2] Bogya, E. S., Barabás, R., Csavdári, C., Dejeu, V., & Bâldea, I. (2009). Hydroxyapatite modified with silica used for sorption of copper(II). Chemical Papers, 63, 568–573. DOI: 10.2478/s11696-009-0059-x. http://dx.doi.org/10.2478/s11696-009-0059-x10.2478/s11696-009-0059-xSearch in Google Scholar

[3] Branger, C., Meouche, W., & Margaillan, A. (2013). Recent advances on ion-imprinted polymers. Reactive & Functional Polymers, 73, 859–875. DOI: 10.1016/j.reactfunctpolym.2013.03.021. http://dx.doi.org/10.1016/j.reactfunctpolym.2013.03.02110.1016/j.reactfunctpolym.2013.03.021Search in Google Scholar

[4] Bulgariu, L., Bulgariu, D., & Macoveanu, M. (2012). Characteristics of sorption of uncomplexed and complexed Pb(II) from aqueous solutions onto peat. Chemical Papers, 66, 239–247. DOI: 10.2478/s11696-012-0149-z. http://dx.doi.org/10.2478/s11696-012-0149-z10.2478/s11696-012-0149-zSearch in Google Scholar

[5] Chen, A. H., Yang, C. Y., Chen, C. Y., Chen, C. Y., & Chen, C. W. (2009). The chemically crosslinked metal-complexed chitosans for comparative adsorptions of Cu(II), Zn(II), Ni(II) and Pb(II) ions in aqueous medium. Journal of Hazardous Materials, 163, 1068–1075. DOI: 10.1016/j.jhazmat.2008.07.073. http://dx.doi.org/10.1016/j.jhazmat.2008.07.07310.1016/j.jhazmat.2008.07.073Search in Google Scholar PubMed

[6] Chen, J. H., Li, G. P., Liu, Q. L., Ni, J. C., Wu, W. B., & Lin, J. M. (2010a). Cr(III) ionic imprinted polyvinyl alcohol/sodium alginate (PVA/SA) porous composite membranes for selective adsorption of Cr(III) ions. Chemical Engineering Journal, 165, 465–473. DOI: 10.1016/j.cej.2010.09.034. http://dx.doi.org/10.1016/j.cej.2010.09.03410.1016/j.cej.2010.09.034Search in Google Scholar

[7] Chen, R. R., Qin, L., Jia, M., He, X. W., & Li, W. Y. (2010b). Novel surface-modified molecularly imprinted membrane prepared with iniferter for permselective separation of lysozyme. Journal of Membrane Science, 363, 212–220. DOI: 10.1016/j.memsci.2010.07.026. http://dx.doi.org/10.1016/j.memsci.2010.07.02610.1016/j.memsci.2010.07.026Search in Google Scholar

[8] Chen, J. H., Lin, H., Luo, Z. H., He, Y. S., & Li, G. P. (2011). Cu(II)-imprinted porous film adsorbent Cu-PVA-SA has high uptake capacity for removal of Cu(II) ions from aqueous solution. Desalination, 277, 265–273. DOI: 10.1016/j.desal.2011.04.040. http://dx.doi.org/10.1016/j.desal.2011.04.04010.1016/j.desal.2011.04.040Search in Google Scholar

[9] Cheng, Z., Liu, X., Han, M., & Ma, W. (2010). Adsorption kinetic character of copper ions onto a modified chitosan transparent thin membrane from aqueous solution. Journal of Hazardous Materials, 182, 408–415. DOI: 10.1016/j.jhazmat.2010.06.048. http://dx.doi.org/10.1016/j.jhazmat.2010.06.04810.1016/j.jhazmat.2010.06.048Search in Google Scholar PubMed

[10] Hosseini-Bandegharaei, A., Karimzadeh, M., Sarwghadi, M., Heydarbeigi, A., Hosseini, S. H., Nedaie, M., & Shoghi, H. (2014). Use of a selective extractant-impregnated resin for removal of Pb(II) ion from waters and wastewaters: Kinetics, equilibrium and thermodynamic study. Chemical Engineering Research and Design, 92, 581–591. DOI: 10.1016/j.cherd.2013.10.007. http://dx.doi.org/10.1016/j.cherd.2013.10.00710.1016/j.cherd.2013.10.007Search in Google Scholar

[11] Kimaro, A., Kelly, L. A., & Murray, G. M. (2001). Molecularly imprinted ionically permeable membrane for uranyl ion. Chemical Communications, 2001, 1282–1283. DOI: 10.1039/b103077a. http://dx.doi.org/10.1039/b103077a10.1039/b103077aSearch in Google Scholar

[12] Koyano, T., Koshizaki, N., Umehara, H., Nagura, M., & Minoura, N. (2000). Surface states of PVA/chitosan blended hydrogels. Polymer, 41, 4461–4465. DOI: 10.1016/s0032-3861(99)00675-8. http://dx.doi.org/10.1016/S0032-3861(99)00675-810.1016/S0032-3861(99)00675-8Search in Google Scholar

[13] Li, N., & Bai, R. (2005). Copper adsorption on chitosan-cellulose hydrogel beads: behaviors and mechanisms. Separation and Purification Technology, 42, 237–247. DOI: 10.1016/j.seppur.2004.08.002. http://dx.doi.org/10.1016/j.seppur.2004.08.00210.1016/j.seppur.2004.08.002Search in Google Scholar

[14] Ma, X., Chen, R., Zheng, X., Youn, H., & Chen, Z. (2011). Preparation of molecularly imprinted CS membrane for recognizing naringin in aqueous media. Polymer Bulletin, 66, 853–863. DOI: 10.1007/s00289-011-0453-8. http://dx.doi.org/10.1007/s00289-011-0453-810.1007/s00289-011-0453-8Search in Google Scholar

[15] Peydayesh, M., Esfandyari, G. R., Mohammadi, T., & Alamdari, E. K. (2013). Pertraction of cadmium and zinc ions using a supported liquid membrane impregnated with different carriers. Chemical Papers, 67, 389–397. DOI: 10.2478/s11696-013-0310-3. http://dx.doi.org/10.2478/s11696-013-0310-310.2478/s11696-013-0310-3Search in Google Scholar

[16] Razavi, S., Sabetghadam, A., & Mohammadi, T. (2011). Dehydration of isopropanol by PVA-APTEOS/TEOS nanocomposite membranes. Chemical Engineering Research and Design, 89, 148–155. DOI: 10.1016/j.cherd.2010.06.004. http://dx.doi.org/10.1016/j.cherd.2010.06.00410.1016/j.cherd.2010.06.004Search in Google Scholar

[17] Salehi, E., Madaeni, S. S., Rajabi, L., Vatanpour, V., Derakhshan, A. A., Zinadini, S., Ghorabi, S., & Ahmadi Monfared, H. (2012). Novel chitosan/poly(vinyl) alcohol thin adsorptive membranes modified with amino functionalized multi-walled carbon nanotubes for Cu(II) removal from water: Preparation, characterization, adsorption kinetics and thermodynamics. Separation and Purification Technology, 89, 309–319. DOI: 10.1016/j.seppur.2012.02.002. http://dx.doi.org/10.1016/j.seppur.2012.02.00210.1016/j.seppur.2012.02.002Search in Google Scholar

[18] Shawky, H. A. (2009). Synthesis of ion-imprinting chitosan/PVA crosslinked membrane for selective removal of Ag(I). Journal of Applied Polymer Science, 114, 2608–2615. DOI: 10.1002/app.30816. http://dx.doi.org/10.1002/app.3081610.1002/app.30816Search in Google Scholar

[19] Vatanpour, V., Madaeni, S. S., Zinadini, S., & Rajabi, H. R. (2011). Development of ion imprinted technique for designing nickel ion selective membrane. Journal of Membrane Science, 373, 36–42. DOI: 10.1016/j.memsci.2011.02.030. http://dx.doi.org/10.1016/j.memsci.2011.02.03010.1016/j.memsci.2011.02.030Search in Google Scholar

[20] Wan Ngah, W. S., Teong, L. C., & Hanafiah, M. A. K. M. (2011). Adsorption of dyes and heavy metal ions by chitosan composites: A review. Carbohydrate Polymers, 83, 1446–1456. DOI: 10.1016/j.carbpol.2010.11.004. http://dx.doi.org/10.1016/j.carbpol.2010.11.00410.1016/j.carbpol.2010.11.004Search in Google Scholar

[21] Wang, X. J., Xu, Z. L., Bing, N. C., & Yang, Z. G. (2008). Preparation and characterization of metal-complex imprinted PVDF hollow fiber membranes. Journal of Applied Polymer Science, 109, 64–73. DOI: 10.1002/app.26805. http://dx.doi.org/10.1002/app.2680510.1002/app.26805Search in Google Scholar

[22] Wang, X., Zhang, L., Ma, C., Song, R., Hou, H., & Li, D. (2009). Enrichment and separation of silver from waste solutions by metal ion imprinted membrane. Hydrometallurgy, 100, 82–86. DOI: 10.1016/j.hydromet.2009.10.006. http://dx.doi.org/10.1016/j.hydromet.2009.10.00610.1016/j.hydromet.2009.10.006Search in Google Scholar

[23] Wang, Z., Wang, M., Wu, G., Shen, Y., & He, C. (2010). Ion imprinted sol-gel nanotubes membrane for selective separation of copper ion from aqueous solution. Microchimica Acta, 169, 195–200. DOI: 10.1007/s00604-010-0332-2. http://dx.doi.org/10.1007/s00604-010-0418-x10.1007/s00604-010-0332-2Search in Google Scholar

[24] Wang, W. S., Li, Y. B., Gao, B. J., Huang, X. W., Zhang, Y. Q., Xu, Y., & An, F. Q. (2013). Effective removal of Fe(II) impurity from rare earth solution using surface imprinted polymer. Chemical Engineering Research and Design, 91, 2759–2764. DOI: 10.1016/j.cherd.2013.05.006. http://dx.doi.org/10.1016/j.cherd.2013.05.00610.1016/j.cherd.2013.05.006Search in Google Scholar

[25] Zarghami, S., Kazemimoghadam, M., & Mohammadi, T. (2014). Cu(II) removal enhancement from aqueous solutions using ion-imprinted membrane technique. Chemical Papers, 68, 809–815. DOI: 10.2478/s11696-013-0509-3. http://dx.doi.org/10.2478/s11696-013-0509-310.2478/s11696-013-0509-3Search in Google Scholar

[26] Zhai, Y., Liu, Y., Chang, X., Ruan, X., & Liu, J. (2008). Metal ion-small molecule complex imprinted polymer membranes: Preparation and separation characteristics. Reactive & Functional Polymers, 68, 284–291. DOI: 10.1016/j.reactfunctpolym.2007.08.013. http://dx.doi.org/10.1016/j.reactfunctpolym.2007.08.01310.1016/j.reactfunctpolym.2007.08.013Search in Google Scholar

[27] Zhang, Y., Shan, X., & Gao, X. (2011). Development of a molecularly imprinted membrane for selective separation of flavonoids. Separation and Purification Technology, 76, 337–344. DOI: 10.1016/j.seppur.2010.10.024. http://dx.doi.org/10.1016/j.seppur.2010.10.02410.1016/j.seppur.2010.10.024Search in Google Scholar

Published Online: 2014-6-24
Published in Print: 2014-10-1

© 2014 Institute of Chemistry, Slovak Academy of Sciences

Articles in the same Issue

  1. Chemical preparation and applications of silver dendrites
  2. Evaluation of antioxidant activity and DNA cleavage protection effect of naphthyl hydroxamic acid derivatives through conventional and fluorescence microscopic methods
  3. Modelling of ORL1 receptor-ligand interactions
  4. Kinetics of enantioselective liquid-liquid extraction of phenylglycine enantiomers using a BINAP-copper complex as chiral selector
  5. Diffusive transport of Cu(II) ions through thin ion imprinted polymeric membranes
  6. Magnetic mixed matrix membranes in air separation
  7. The use of impregnated perlite as a heterogeneous catalyst for biodiesel production from marula oil
  8. Nitrobenzene degradation by micro-sized iron and electron efficiency evaluation
  9. RP-HPLC-UV-ESI-MS phytochemical analysis of fruits of Conocarpus erectus L.
  10. Residue analysis of fosthiazate in cucumber and soil by QuEChERS and GC-MS
  11. Degradation of polylactide using basic ionic liquid imidazolium acetates
  12. Ring-opening polymerisation of ɛ-caprolactone catalysed by Brønsted acids
  13. Click synthesis by Diels-Alder reaction and characterisation of hydroxypropyl methylcellulose-based hydrogels
  14. Preparation and physical properties of chitosan-coated calcium sulphate whiskers
  15. A facile synthetic route for antineoplastic drug GDC-0449
  16. Two new frameworks for biphenyl-3,3′,5,5′-tetracarboxylic acid and nitrogen-containing organics
  17. Antioxidant and binding properties of methanol extracts from indigo plant leaves
  18. Dithiols as more effective than monothiols in protecting biomacromolecules from free-radical-mediated damage: in vitro oxidative degradation of high-molar-mass hyaluronan
Downloaded on 27.11.2025 from https://www.degruyterbrill.com/document/doi/10.2478/s11696-014-0578-y/pdf
Scroll to top button