Home Antioxidant and binding properties of methanol extracts from indigo plant leaves
Article
Licensed
Unlicensed Requires Authentication

Antioxidant and binding properties of methanol extracts from indigo plant leaves

  • Yun-Jum Park EMAIL logo , Chang-Sik Shin , Bo-Eun Kim , Gil-Yong Cheon , Jong-Hyang Bae , Yang-Gyu Ku , Su-Min Park , Buk-Gu Heo , Dae-Guk Kim , Ja-Yong Cho and Shela Gorinstein
Published/Copyright: June 24, 2014
Become an author with De Gruyter Brill

Abstract

This study was conducted to clarify the effect of ultra-pressure treatment on the extraction of bioactive compounds from indigo plant leaves (Polygonum tinctorium Lour.) and on their properties. Leaves were harvested the in mid-August, 2013, from Naju City (Korea), and treated using two methods: ultra-pressure (550 MPa, 3 min) and hot-air (70°C, 24 h). Then, the leaves were ultrasonically extracted with methanol. The content of indirubin in leaves treated with ultra pressure and hot air was (535.55 ± 26.14) mg kg−1 and (52.63 ± 6.45) mg kg−1, respectively, and that of tryptanthrin was (165.55 ± 8.74) mg kg−1 and (153.00 ± 7.62) mg kg−1, respectively. Polyphenolic content in the leaves extract was (127.24 ± 13.67) mg kg−1 after the ultrapressure and (88.22 ± 5.33) mg kg−1 after the hot-air treatment. The content of flavonoids was (2298.67 ± 83.27) mg kg−1 after the ultra-pressure and (3224.00 ± 21.45) mg kg−1 after the hotair treatment. Di(phenyl)-(2,4,6-trinitrophenyl)iminoazanium (DPPH) radical scavenging activities of the indigo extract obtained by ultra-pressure and hot-air treatment methods at the concentration of 1 mg mL−1 were (80.25 ± 0.73) % and (66.54 ± 2.35) %, respectively, and 2,2′-azinobis(3-ethylbenzthiazoline-6-sulphonic acid) (ABTS) radical scavenging activities were estimated as (90.14 ± 0.79) % and (64.45 ± 8.97) %, respectively. The methanol leaf extract after ultra-pressure treatment exhibited higher binding properties to human serum albumin in comparison with catechin and conventional treatments. Consequently, it was assumed that the ultra-pressure treatment is an effective method for the extraction of bioactive compounds from indigo leaves.

[1] Abdel-Sattar, E., Harraz, F. M., Ghareib, S. A., Elberry, A. A., Gabr, S., & Suliaman, M. I. (2011). Antihyperglycaemic and hypolipidaemic effects of the methanolic extract of Caralluma tuberculata in streptozotocin-induced diabetic rats. Natural Product Research, 25, 1171–1179. DOI: 10.1080/14786419.2010.490782. http://dx.doi.org/10.1080/14786419.2010.49078210.1080/14786419.2010.490782Search in Google Scholar PubMed

[2] Chon, S. U., Heo, B. G., Park, Y. S., Cho, J. Y., & Gorinstein, S. (2008). Characteristics of the leaf parts of some traditional Korean salad plants used for food. Journal of the Science of Food and Agriculture, 88, 1963–1968. DOI: 10.1002/jsfa.3304. http://dx.doi.org/10.1002/jsfa.330410.1002/jsfa.3304Search in Google Scholar

[3] Fernández-Agulló, A., Pereira, E., Freire, M. S., Valentłao, P., Andrade, P. B., & González-álvarez, J. (2013). Influence of solvent on the antioxidant and antimicrobial properties of walnut (Juglans regia L.) green husk extracts. Industrial Crops and Products, 42, 126–132. DOI: 10.1016/j.indcrop.2012.05.021. http://dx.doi.org/10.1016/j.indcrop.2012.05.02110.1016/j.indcrop.2012.05.021Search in Google Scholar

[4] Filipiak-Szok, A., Kurzawa, M., & Szłyk, E. (2012). Determination of anti-oxidant capacity and content of phenols, phenolic acids, and flavonols in Indian and European gooseberry. Chemical Papers, 66, 259–268. DOI: 10.2478/s11696-012-0151-5. http://dx.doi.org/10.2478/s11696-012-0151-510.2478/s11696-012-0151-5Search in Google Scholar

[5] Heo, B.G., Park, Y. J., Lee, S. J., Kim, K. S., Cho, J. Y., & Boo, H. O. (2012). Antioxidant enzyme activity and antimicrobial activity of Isatis tinctoria extract. Korean Journal of Plant Research, 25, 543–549. DOI: 10.7732/kjpr.2012.25.5.543. http://dx.doi.org/10.7732/kjpr.2012.25.5.54310.7732/kjpr.2012.25.5.543Search in Google Scholar

[6] Heo, B. G., Jang, H. G., Cho, J. Y., Namiesnik, J., Jastrzebski, Z., Vearasilp, K., González-Aguilar, G., Martinez-Ayala, A. L., Suhaj, M., & Gorinstein, S. (2013). Partial characterization of indigo (Polygonum tinctorium Ait.) plant seeds and leaves. Industrial Crops and Products, 42, 429–439. DOI: 10.1016/j.indcrop.2012.06.029. http://dx.doi.org/10.1016/j.indcrop.2012.06.02910.1016/j.indcrop.2012.06.029Search in Google Scholar

[7] Im, M. H., Park, Y. S., Ham, K. S., Kang, S. G., Heo, B. G., Leontowicz, H., Leontowicz, M., Namiesnik, J., Najman, K., & Gorinstein, S. (2012). Effects of cooking on the bioactivity of lotus roots and white onions. International Journal of Food Properties, 15, 49–59. DOI: 10.1080/10942911003687256. http://dx.doi.org/10.1080/1094291100368725610.1080/10942911003687256Search in Google Scholar

[8] Iwaki, K., Koya-Miyata, S., Kohno, K., Ushio, S., & Fukuda, S. (2006). Antimicrobial activity of Polygonum tinctorium Lour: extract against oral pathogenie bacteria. Journal of Natural Medicines, 60, 121–125. DOI: 10.1007/s11418-005-0025-z. http://dx.doi.org/10.1007/s11418-005-0025-z10.1007/s11418-005-0025-zSearch in Google Scholar

[9] Iwaki, K., Ohashi, E., Arai, N., Kohno, K., Ushio, S., Taniguchi, M., & Fukuda, S. (2011). Tryptanthrin inhibits Th2 development, and IgE-mediated degranulation and IL-4 production by rat basophilic leukemia RBL-2H3 cells. Journal of Ethnopharmacology, 134, 450–459. DOI: 10.1016/j.jep.2010.12.041. http://dx.doi.org/10.1016/j.jep.2010.12.04110.1016/j.jep.2010.12.041Search in Google Scholar PubMed

[10] Kim, H., & Song, M. J. (2011). Analysis and recordings of orally transmitted knowledge about medicinal plants in the southern mountainous region of Korea. Journal of Ethnopharmacology, 134, 676–696. DOI: 10.1016/j.jep.2011.01.024. http://dx.doi.org/10.1016/j.jep.2011.01.02410.1016/j.jep.2011.01.024Search in Google Scholar PubMed

[11] Kim, S. J., Heo, B. G., & Kim, K. S. (2012). Differences of growth characteristics and colorant level in two breeding lines of Persicaria tinctoria H. gross. Korean Journal of Crop Science, 57, 209–214. DOI: 10.7740/kjcs.2012.57.3.209. http://dx.doi.org/10.7740/kjcs.2012.57.3.20910.7740/kjcs.2012.57.3.209Search in Google Scholar

[12] Kim, M. H., Choi, Y. Y., Yang, G., Cho, I. H., Nam, D., & Yang, W. M. (2013a). Indirubin, a purple 3,2-bisindole, inhibited allergic contact dermatitis via regulating T helper (Th)-mediated immune system in DNCB-induced model. Journal of Ethnopharmacology, 145, 214–219. DOI: 10.1016/j.jep.2012.10.055. http://dx.doi.org/10.1016/j.jep.2012.10.05510.1016/j.jep.2012.10.055Search in Google Scholar PubMed

[13] Kim, W. S., Lee, M. J., Kim, D. H., Lee, J. E., Kim, J. I., Kim, Y. C., Song, M. R., & Park, S. G. (2013b). 5′-OH-5-nitroindirubin oxime (AGM130), an indirubin derivative, induces apoptosis of imatinib-resistant chronic myeloid leukemia cells. Leukemia Research, 37, 427–433. DOI: 10.1016/j.leukres.2012.12.017. http://dx.doi.org/10.1016/j.leukres.2012.12.01710.1016/j.leukres.2012.12.017Search in Google Scholar PubMed

[14] Kimoto, T., Hino, K., Koya-Miyata, S., Yamamoto, Y., Takeuchi, M., Nishizaki, Y., Micallef, M. J., Ushio, S., Iwaki, K., Ikeda, M., & Kurimoto, M. (2001). Cell differentiation and apoptosis of monocytic and promyelocytic leukemia cells (U-937 and HL-60) by tryptanthrin, an active ingredient of Polygonum tinctorium Lour. Pathology International, 51, 315–325. DOI: 10.1046/j.1440-1827.2001.01204.x. http://dx.doi.org/10.1046/j.1440-1827.2001.01204.x10.1046/j.1440-1827.2001.01204.xSearch in Google Scholar PubMed

[15] Lee, S. J., Park, D. W., Jang, H. G., Kim, C. Y., Park, Y. S., Kim, T. C., & Heo, B. G. (2006). Total phenol content, electron donating ability, and tyrosinase inhibition activity of pear cut branch extract. Korean Journal of Horticultural Science & Technology, 24, 338–341. Search in Google Scholar

[16] Lu, S. H., & Xu, D. H. (2013). Cold stress accentuates pressure overload-induced cardiac hypertrophy and contractile dysfunction: Role of TRPV1/AMPK-mediated autophagy. Biochemical and Biophysical Research Communications, 442, 8–15. DOI: 10.1016/j.bbrc.2013.10.128. http://dx.doi.org/10.1016/j.bbrc.2013.10.12810.1016/j.bbrc.2013.10.128Search in Google Scholar PubMed

[17] Monrad, J. K., Srinivas, K., Howard, L. R., & King, J. W. (2012). Design and optimization of a semicontinuous hotcold extraction of polyphenols from grape pomace. Journal of Agricultural and Food Chemistry, 60, 5571–5582. DOI: 10.1021/jf300569w. http://dx.doi.org/10.1021/jf300569w10.1021/jf300569wSearch in Google Scholar PubMed

[18] Nalini, N., Aranganathan, S., & Kabalimurthy, J. (2012). Chemopreventive efficacy of hesperetin (citrus flavonone) against 1,2-dimethylhydrazine-induced rat colon carcinogenesis. Toxicology Mechanisms and Methods, 22, 397–408. DOI: 10.3109/15376516.2012.673092. http://dx.doi.org/10.3109/15376516.2012.67309210.3109/15376516.2012.673092Search in Google Scholar PubMed

[19] Namiesnik, J., Vearasilp, K., Kupska, M., Ham, K. S., Kang, S. G., Park, Y. K., Barasch, D., Nemirovski, A., & Gorinstein, S. (2013). Antioxidant activities and bioactive components in some berries. European Food Research and Technology, 237, 819–829. DOI: 10.1007/s00217-013-2041-7. http://dx.doi.org/10.1007/s00217-013-2041-710.1007/s00217-013-2041-7Search in Google Scholar

[20] Recio, M. C., Cerdá-Nicolás, M., Potterat, O., Hamburger, M., & Ríos, J. L. (2006). Anti-inflammatory and antiallergic activity in vivo of lipophilic Isatis tinctoria extracts and tryptanthrin. Planta Medica, 72, 539–546. DOI: 10.1055/s-2006-931562. http://dx.doi.org/10.1055/s-2006-93156210.1055/s-2006-931562Search in Google Scholar PubMed

[21] Sánchez-Burgos, J. A., Ramírez-Mares, M. V., Larrosa, M. M., Gallegos-Infante, J. A., González-Laredo, R. F., Medina-Torres, L., & Rocha-Guzmán, N. E. (2013). Antioxidant, antimicrobial, antitopoisomerase and gastroprotective effect of herbal infusions from four Quercus species. Industrial Crops and Products, 42, 57–62. DOI: 10.1016/j.indcrop.2012.05.017. http://dx.doi.org/10.1016/j.indcrop.2012.05.01710.1016/j.indcrop.2012.05.017Search in Google Scholar

[22] Xiao, J. B., Chen, T. T., Cao, H., Chen, L. S., & Yang, F. (2011). Molecular property-affinity relationship of flavanoids and flavonoids for HSA in vitro. Molecular Nutrition & Food Research, 55, 310–317. DOI: 10.1002/mnfr.201000208. http://dx.doi.org/10.1002/mnfr.20100020810.1002/mnfr.201000208Search in Google Scholar PubMed

[23] Xie, Y. B., Liu, Y. L., Ma, C., Yuan, Z. M., Wang, W. Y., Zhu, Z. Y., Gao, G. Q., Liu, X. G., Yuan, H. X., Chen, R. Z., Huang, S. J., Wang, X. L., Zhu, X. N., Mao, Z. X., & Li, M. T. (2004). Indirubin-3′-oxime inhibits c-Jun NH2-terminal kinase: antiapoptotic effect in cerebellar granule neurons. Neuroscience Letters, 367, 355–359. DOI: 10.1016/j.neulet.2004.06.044. http://dx.doi.org/10.1016/j.neulet.2004.06.04410.1016/j.neulet.2004.06.044Search in Google Scholar PubMed

[24] Zeng, Q. H., Zhang, X. W., Xu, X. L., Jiang, M. H., Xu, K. P., Piao, J. H., Zhu, L., Chen, J., & Jiang, J. G. (2013). Antioxidant and anticomplement functions of flavonoids extracted from Penthorum chinense Pursh. Food & Function, 4, 1811–1818. DOI: 10.1039/c3fo60342c. http://dx.doi.org/10.1039/c3fo60342c10.1039/c3fo60342cSearch in Google Scholar PubMed

[25] Zhou, W., Zhang, X. Y., Lv, Y. P., Liu, X. D., Xu, C., & Duan, G. L. (2013). SM-optimized IRAE sample pretreatment and HPLC simultaneous determination of tryptanthrin, indigo, and indirubin from Chinese herbal medicine Radix Isatidis. Acta Chromatographica, 25, 297–315. DOI: 10.1556/achrom.25.2013.2.7. http://dx.doi.org/10.1556/AChrom.25.2013.2.710.1556/AChrom.25.2013.2.7Search in Google Scholar

Published Online: 2014-6-24
Published in Print: 2014-10-1

© 2014 Institute of Chemistry, Slovak Academy of Sciences

Articles in the same Issue

  1. Chemical preparation and applications of silver dendrites
  2. Evaluation of antioxidant activity and DNA cleavage protection effect of naphthyl hydroxamic acid derivatives through conventional and fluorescence microscopic methods
  3. Modelling of ORL1 receptor-ligand interactions
  4. Kinetics of enantioselective liquid-liquid extraction of phenylglycine enantiomers using a BINAP-copper complex as chiral selector
  5. Diffusive transport of Cu(II) ions through thin ion imprinted polymeric membranes
  6. Magnetic mixed matrix membranes in air separation
  7. The use of impregnated perlite as a heterogeneous catalyst for biodiesel production from marula oil
  8. Nitrobenzene degradation by micro-sized iron and electron efficiency evaluation
  9. RP-HPLC-UV-ESI-MS phytochemical analysis of fruits of Conocarpus erectus L.
  10. Residue analysis of fosthiazate in cucumber and soil by QuEChERS and GC-MS
  11. Degradation of polylactide using basic ionic liquid imidazolium acetates
  12. Ring-opening polymerisation of ɛ-caprolactone catalysed by Brønsted acids
  13. Click synthesis by Diels-Alder reaction and characterisation of hydroxypropyl methylcellulose-based hydrogels
  14. Preparation and physical properties of chitosan-coated calcium sulphate whiskers
  15. A facile synthetic route for antineoplastic drug GDC-0449
  16. Two new frameworks for biphenyl-3,3′,5,5′-tetracarboxylic acid and nitrogen-containing organics
  17. Antioxidant and binding properties of methanol extracts from indigo plant leaves
  18. Dithiols as more effective than monothiols in protecting biomacromolecules from free-radical-mediated damage: in vitro oxidative degradation of high-molar-mass hyaluronan
Downloaded on 4.11.2025 from https://www.degruyterbrill.com/document/doi/10.2478/s11696-014-0572-4/html
Scroll to top button