Abstract
A commercial lipase, “Lipolase T100”, was immobilised onto silica by means of physical adsorption. The silica-bound lipase was subsequently exposed to 1 vol. % glutaraldehyde (pentane-1,5-dial). The silica was loaded repeatedly with the Lipolase T100 in 0.05 M Tris buffer (pH 8.5) until saturation was achieved. During the 1st, 2nd, 3rd, 4th, and 5th cycles of loading of silica with the enzyme, the protein-binding on the silica achieved 51.73 %, 48.27 %, 26.92 %, 10.73 %, and 4.29 %, respectively. The synthesis of methyl salicylate (methyl 2-hydroxybenzoate) and linalyl ferulate (3,7-dimethylocta-1,6-dien-3-yl 4-hydroxy-3-methoxycinnamate) carried out at 45°C under shaking with mole ratios of 200 mM of acid and 500 mM alcohol in DMSO using 15 mg mL−1 of hyper-activated biocatalyst resulted in yield(s) of 77.2 % of methyl salicylate and 65.3 % of linalyl ferulate in the presence of molecular sieves. The hyper-activated biocatalyst was more efficient than the previously reported silica-bound lipase with minimum leaching of the enzyme from the reaction mixture. The K m and V max of the free (0.142 mM and 38.31 μmol min−1 mL−1, respectively) and silica-bound lipase (0.043 mM and 26.32 μmol min−1 mg−1, respectively) were determined for the hydrolysis of p-NPP. During repeated esterification studies using silica-bound lipase, yields of 50.1 % of methyl salicylate after the 5th cycle, and 53.9 % of linalyl ferulate after the 7th cycle of esterification were recorded. In the presence of molecular sieves (30 mg mL−1) in the reaction mixture, the maximum syntheses of methyl salicylate (77.2 %) and linalyl ferulate (65.3 %) were also observed. In a volumetric batch scale-up, when the reaction volume was increased to 50 mL, 44.9 % and 31.4 % yields of methyl salicylate and linalyl ferulate, respectively, were achieved.
[1] Aulakh, S. S., & Prakash, R. (2010). Optimization of medium and process parameters for the production of lipase from an oil-tolerant Aspergillus sp. (RBD-01). Journal of Basic Microbiology, 50, 37–42. DOI: 10.1002/jobm.200900361. http://dx.doi.org/10.1002/jobm.20090036110.1002/jobm.200900361Search in Google Scholar
[2] Bučko, M., Mislovičová, D., Nahálka, J., Vikartovská, A., Šefčovičová, J., Katrlík, J., Tkčá, J., Gemeiner, P., Lacík, B., Štefuca, V., Polakovič, M., Rosenberg, M., Rebroš, M., Šmogrovičová, D., & Švitel, J. (2012). Immobilization in biotechnology and biorecognition: from macro- to nanoscale systems. Chemical Papers, 66, 983–998. DOI: 10.2478/s11696-012-0226-3. http://dx.doi.org/10.2478/s11696-012-0226-310.2478/s11696-012-0226-3Search in Google Scholar
[3] Bruno, L. M., Coelho, J. S., Melo, E. H. M., & Lima-Filho, J. L. (2005). Characterization of Mucor meihei lipase immobilised on polysiloxane-polyvinyl alcohol magnetic particles. World Journal of Microbiology & Biotechnology, 21, 189–192. DOI: 10.1007/s11274-004-3321-y. http://dx.doi.org/10.1007/s11274-004-3321-y10.1007/s11274-004-3321-ySearch in Google Scholar
[4] Chandel, C., Kumar, A., & Kanwar, S. S. (2011). Enzymatic synthesis of butyl ferulate by silica-immobilised lipase in a non-aqueous medium. Journal of Biomaterials and Nanobiotechnology, 2, 400–408. DOI: 10.4236/jbnb.2011.24049. http://dx.doi.org/10.4236/jbnb.2011.2404910.4236/jbnb.2011.24049Search in Google Scholar
[5] Chiou, S. H., & Wu, W. T. (2005). Immobilization of Candida rugosa lipase on chitosan with activation of the hydroxyl groups. Biomaterials, 25, 197–204. DOI: 10.1016/s0142-9612(03)00482-4. http://dx.doi.org/10.1016/S0142-9612(03)00482-410.1016/S0142-9612(03)00482-4Search in Google Scholar
[6] Huang, L., & Cheng, Z. M. (2008). Immobilization of lipase on chemically modified bimodal ceramic foams for olive oil hydrolysis. Chemical Engineering Journal, 144, 103–109. DOI: 10.1016/j.cej.2008.05.015. http://dx.doi.org/10.1016/j.cej.2008.05.01510.1016/j.cej.2008.05.015Search in Google Scholar
[7] Chen, J. P., & Lin, W. S. (2003). Sol-gel powders and supported sol-gel polymers for immobilization of lipase in ester synthesis. Enzyme and Microbial Technology, 32, 801–811. DOI: 10.1016/s0141-0229(03)00052-8. http://dx.doi.org/10.1016/S0141-0229(03)00052-810.1016/S0141-0229(03)00052-8Search in Google Scholar
[8] Kanwar, S. S., Kaushal, R. K., Verma, M. L., Kumar, Y., Chauhan, G. S., Gupta, R., & Chimni, S. S. (2005a). Synthesis of ethyl laurate by hydrogel immobilized lipase of Bacillus coagulans MTCC-6375. Indian Journal of Microbiology, 45, 187–193. Search in Google Scholar
[9] Kanwar, S. S., Verma, H. K., Kaushal, R. K., Gupta, R., Chimni, S. S., Kumar, Y., & Chauhan, G. S. (2005b). Effect of solvents and kinetic parameters on synthesis of ethyl propionate catalysed by poly (AAc-co-HPMA-cl-MBAm)-matriximmobilized lipase ofPseudomonas aeruginosa BTS-2. World Journal of Microbiology & Biotechnology, 21, 1037–1044. DOI: 10.1007/s11274-004-7869-3. http://dx.doi.org/10.1007/s11274-004-7869-310.1007/s11274-004-7869-3Search in Google Scholar
[10] Kharrat, N., Ali, Y. B., Marzouk, S., Gargouri, Y. T., & Karra-Châabouni, M. (2011). Immobilization of Rhizopus oryzae lipase on silica aerogels by adsorption: Comparison with the free enzyme. Process Biochemistry, 46, 1083–1089. DOI: 10.1016/j.procbio.2011.01.029. http://dx.doi.org/10.1016/j.procbio.2011.01.02910.1016/j.procbio.2011.01.029Search in Google Scholar
[11] Kumar, A., & Kanwar, S. S. (2011a). Synthesis of ethyl ferulate in organic medium using celite-immobilized lipase. Bioresource Technology, 102, 2162–2167. DOI: 10.1016/j.biortech.2010.10.027. http://dx.doi.org/10.1016/j.biortech.2010.10.02710.1016/j.biortech.2010.10.027Search in Google Scholar PubMed
[12] Kumar, A., & Kanwar, S. S. (2011b). Synthesis of isopropyl ferulate using silica-immobilized lipase in an organic medium. Enzyme Research, 2011, 718949. DOI: 10.4061/2011/718949. http://dx.doi.org/10.4061/2011/71894910.4061/2011/718949Search in Google Scholar
[13] Kumar, A., & Kanwar, S. S. (2012a). Lipase production in solid-state fermentation (SSF): Recent developments and biotechnological applications. Dynamic Biochemistry, Process Biotechnology and Molecular Biology, 6(1), 13–27. Search in Google Scholar
[14] Kumar, A., & Kanwar, S. S. (2012b). An innovative approach to immobilize lipase onto natural fiber and its application for the synthesis of 2-octyl ferulate in an organic medium. Current Biotechnology, 1, 241–248. DOI: 10.2174/2211550111201030241. http://dx.doi.org/10.2174/221155011120103024110.2174/2211550111201030241Search in Google Scholar
[15] Kumar, A., Sharma, P., & Kanwar, S. S. (2012). Lipase catalyzed esters syntheses in organic media: a review. International Journal of Institutional Pharmacy and Life Sciences, 2(2), 91–119. Search in Google Scholar
[16] Lowry, O. H., Rosebrough, N. J., Farr, A. L., & Randall, R. J. (1951). Protein measurement with the Folin phenol reagent. The Journal of Biological Chemistry, 193, 265–275. 10.1016/S0021-9258(19)52451-6Search in Google Scholar
[17] Nagayama, K., Yamasaki, N., & Imai, M. (2002). Fatty acid esterification catalyzed by Candida rugosa lipase in lecithin microemulsion-based organogels. Biochemical Engineering Journal, 12, 231–236. DOI: 10.1016/s1369-703x(02)00076-1. http://dx.doi.org/10.1016/S1369-703X(02)00076-110.1016/S1369-703X(02)00076-1Search in Google Scholar
[18] Panzavolta, F., Soro, S., D’Amato, R., Palocci, C., Cernia, E., & Russo, M. V. (2005). Acetylenic polymers as new immobilization matrices for lipolytic enzymes. Journal of Molecular Catalysis B: Enzymatic, 32, 67–76. DOI: 10.1016/j.molcatb.2004.09.011. http://dx.doi.org/10.1016/j.molcatb.2004.09.01110.1016/j.molcatb.2004.09.011Search in Google Scholar
[19] Patil, D., Das, D., & Nag, A. (2011). Enzymatic synthesis and analytical monitoring of terpene ester by 1H NMR spectroscopy. Chemical Papers, 65, 9–15. DOI: 10.2478/s11696-010-0077-8. http://dx.doi.org/10.2478/s11696-010-0077-810.2478/s11696-010-0077-8Search in Google Scholar
[20] Pires-Cabral, P., da Fonseca, M. M. R., & Ferreira-Dias, S. (2007). Modeling the production of ethyl butyrate catalysed by Candida rugosa lipase immobilised in polyurethane foams. Biochemical Engineering Journal, 33, 148–158. DOI: 10.1016/j.bej.2006.10.015. http://dx.doi.org/10.1016/j.bej.2006.10.01510.1016/j.bej.2006.10.015Search in Google Scholar
[21] Soni, K., & Madamwar, D. (2001). Ester synthesis by lipase immobilized on silica and microemulsion based organogels (MBGs). Process Biochemistry, 36, 607–611. DOI: 10.1016/s0032-9592(00)00250-8. http://dx.doi.org/10.1016/S0032-9592(00)00250-810.1016/S0032-9592(00)00250-8Search in Google Scholar
[22] Verma, M. L., Chauhan, G. S., & Kanwar, S. S. (2008). Enzymatic synthesis of isopropyl myristate using immobilized lipase from Bacillus cereus MTCC 8372. Acta Microbiologica et Immunologica Hungarica, 55, 327–342. DOI: 10.1556/AMicr.55.2008.3.4. http://dx.doi.org/10.1556/AMicr.55.2008.3.410.1556/AMicr.55.2008.3.4Search in Google Scholar PubMed
[23] Verma, M. L., & Kanwar, S. S. (2010). Purification and characterization of a low molecular mass alkaliphilic lipase of Bacillus cereus MTCC 8372. Acta Microbiogica et Immunologica Hungarica, 57, 191–197. DOI: 10.1556/AMicr.57.2010.3.4. http://dx.doi.org/10.1556/AMicr.57.2010.3.410.1556/AMicr.57.2010.3.4Search in Google Scholar PubMed
[24] Winkler, U. K., & Stuckmann, M. (1979). Glucogen, hyaluronate, and some other polysaccharides greatly enhance the formation of exolipase by Serratia marcescens. Journal of Bacteriology, 138, 663–670. 10.1128/jb.138.3.663-670.1979Search in Google Scholar PubMed PubMed Central
[25] Xi, W. W., & Xu, J. H. (2005). Preparation of enantiopure (S)-ketoprofen by immobilized Candida rugosa lipase in packed bed reactor. Process Biochemistry, 40, 2161–2166. DOI: 10.1016/j.procbio.2004.08.003. http://dx.doi.org/10.1016/j.procbio.2004.08.00310.1016/j.procbio.2004.08.003Search in Google Scholar
[26] Yilmaz, E., Can, K., Sezgin, M., & Yilmaz, M. (2011). Immobilization of Candida rugosa lipase on glass beads for enantioselective hydrolysis of racemic Naproxen methyl ester. Bioresource Technology, 102, 499–506. DOI: 10.1016/j.biortech.2010.08.083. http://dx.doi.org/10.1016/j.biortech.2010.08.08310.1016/j.biortech.2010.08.083Search in Google Scholar PubMed
© 2013 Institute of Chemistry, Slovak Academy of Sciences
Articles in the same Issue
- Flexibility of active-site gorge aromatic residues and non-gorge aromatic residues in acetylcholinesterase
- Influence of trace elements supplementation on the production of recombinant frutalin by Pichia pastoris KM71H in fed-batch process
- Mesoporous nanocrystalline MgAl2O4: A new heterogeneous catalyst for the synthesis of 2,4,6-triarylpyridines under solvent-free conditions
- Effective immobilisation of lipase to enhance esterification potential and reusability
- Hydrogen production by steam reforming of glycerol over Ni/Ce/Cu hydroxyapatite-supported catalysts
- Solvent-free acetylation and tetrahydropyranylation of alcohols catalyzed by recyclable sulfonated ordered nanostructured carbon
- Pertraction of methylene blue using a mixture of D2EHPA/M2EHPA and sesame oil as a liquid membrane
- Selective separation of essential phenolic compounds from olive oil mill wastewater using a bulk liquid membrane
- Evaluation of temperature effect on growth rate of Lactobacillus rhamnosus GG in milk using secondary models
- Fastener effect on magnetic properties of chain compounds of dinuclear ruthenium carboxylates
- Synthesis of novel fluorene-functionalised nanoporous silica and its luminescence behaviour in acidic media
- d-Glucosamine as an efficient and green additive for palladium-catalyzed Heck reaction
- Anti-oxidative properties of bi-1,2,4-triazine bisulphides
Articles in the same Issue
- Flexibility of active-site gorge aromatic residues and non-gorge aromatic residues in acetylcholinesterase
- Influence of trace elements supplementation on the production of recombinant frutalin by Pichia pastoris KM71H in fed-batch process
- Mesoporous nanocrystalline MgAl2O4: A new heterogeneous catalyst for the synthesis of 2,4,6-triarylpyridines under solvent-free conditions
- Effective immobilisation of lipase to enhance esterification potential and reusability
- Hydrogen production by steam reforming of glycerol over Ni/Ce/Cu hydroxyapatite-supported catalysts
- Solvent-free acetylation and tetrahydropyranylation of alcohols catalyzed by recyclable sulfonated ordered nanostructured carbon
- Pertraction of methylene blue using a mixture of D2EHPA/M2EHPA and sesame oil as a liquid membrane
- Selective separation of essential phenolic compounds from olive oil mill wastewater using a bulk liquid membrane
- Evaluation of temperature effect on growth rate of Lactobacillus rhamnosus GG in milk using secondary models
- Fastener effect on magnetic properties of chain compounds of dinuclear ruthenium carboxylates
- Synthesis of novel fluorene-functionalised nanoporous silica and its luminescence behaviour in acidic media
- d-Glucosamine as an efficient and green additive for palladium-catalyzed Heck reaction
- Anti-oxidative properties of bi-1,2,4-triazine bisulphides