Abstract
Chlorido-bridged chain complexes of dinuclear ruthenium benzoate analogues, [Ru2{3,4,5-(CmH2m+1O)3C6H2CO2}4Cl]n (mCl) (m = 3, 5–7, 9, 11, 13, 15, 17), were synthesised and the crystal structure of 3Cl · 2nH2O was revealed. The magnetic measurements for a series of the complexes mCl (m = 2–18) revealed that all the complexes show an antiferromagnetic interaction between the dinuclear unit, with a fastener effect giving the stronger interaction as the alkyl-chain length m increases.
[1] Abe, M., Sasaki, Y., Yamaguchi, T., & Ito, T. (1992). X-ray structure, ligand substitution, and other properties of trinuclear ruthenium complex, [Ru3(µ3-O)(µ-C6H5COO)6(py)3] (PF6) (py = pyridine), and X-ray structure of dinuclear ruthenium complex, [Ru2(µ-C6H5COO)4Cl]. Bulletin of the Chemical Society of Japan, 65, 1585–1590. DOI: 10.1246/bcsj.65.1585. http://dx.doi.org/10.1246/bcsj.65.158510.1246/bcsj.65.1585Search in Google Scholar
[2] Angaridis, P. (2005). Ruthenium compounds. In F. A. Cotton, C. A. Murillo, & R. A. Walton (Eds.), Multiple bonds between metal atoms (3rd ed., pp. 377–430). New York, NY, USA: Springer Science and Business Media. DOI: 10.1007/b136230. http://dx.doi.org/10.1007/0-387-25829-9_910.1007/b136230Search in Google Scholar
[3] Aquino, M. A. S. (1998). Diruthenium and diosmium tetracarboxylates: synthesis, physical properties and applications. Coordination Chemistry Reviews, 170, 141–202. DOI: 10.1016/s0010-8545(97)00079-9. http://dx.doi.org/10.1016/S0010-8545(97)00079-910.1016/S0010-8545(97)00079-9Search in Google Scholar
[4] Aquino, M. A. S. (2004). Recent developments in the synthesis and properties of diruthenium tetracarboxylates. Coordination Chemistry Reviews, 248, 1025–1045. DOI: 10.1016/j.ccr.2004.06.016. http://dx.doi.org/10.1016/j.ccr.2004.06.01610.1016/j.ccr.2004.06.016Search in Google Scholar
[5] Barral, M. C., González-Prieto, R., Jiménez-Aparicio, R., Priego, J. L., Torres, M. R., & Urbanos, F. A. (2004). Synthesis, properties, and structural characterization of bromo- and iodotetracarboxylatodiruthenium(II,III) compounds. European Journal of Inorganic Chemistry, 4491–4501. DOI: 10.1002/ejic.200400377. 10.1002/ejic.200400377Search in Google Scholar
[6] Chaia, Z., Heinrich, B., Cukiernik, F., & Guillon, D. (1999). Structural characterization of the mesophases exhibited by dicopper and diruthenium trialkyloxobenzoates. Molecular Crystals and Liquid Crystals Science and Technology. Section A. Molecular Crystals and Liquid Crystals, 330, 213–220. DOI: 10.1080/10587259908025594. http://dx.doi.org/10.1080/1058725990802559410.1080/10587259908025594Search in Google Scholar
[7] Cukiernik, F. D., Ibn-Elhaj, M., Chaia, Z. D., Marchon, J. C., Giroud-Godquin, A. M., Guillon, D., Skoulios, A., & Maldivi, P. (1998a). Mixed-valent diruthenium (II,III) longchain carboxylates. 1. Molecular design of columnar liquidcrystalline order. Chemistry of Materials, 10, 83–91. DOI: 10.1021/cm970231d. http://dx.doi.org/10.1021/cm970231d10.1021/cm970231dSearch in Google Scholar
[8] Cukiernik, F. D., Luneau, D., Marchon, J. C., & Maldivi, P. (1998b). Mixed-valent diruthenium long-chain carboxylates. 2. Magnetic properties. Inorganic Chemistry, 37, 3698–3709. DOI: 10.1021/ic971366o. http://dx.doi.org/10.1021/ic971366o10.1021/ic971366oSearch in Google Scholar PubMed
[9] Donnio, B., Guillon, D., Deschenaux, R., & Bruce, D. W. (2004). Metallomesogens. In J. A. McCleverty, & T. J. Meyer (Eds.), Comprehensive coordination chemistry II (Vol. 7, pp. 357–627). Oxford, UK: Elsevier. DOI: 10.1016/b0-08-043748-6/06150-8. http://dx.doi.org/10.1016/B0-08-043748-6/06150-810.1016/B0-08-043748-6/06150-8Search in Google Scholar
[10] Gaspar, A. B., Seredruk, M., & Gütlich, P. (2009). Spin crossover in metallomesogens. Coordination Chemistry Reviews, 253, 2399–2413. DOI: 10.1016/j.ccr.2008.11.016. http://dx.doi.org/10.1016/j.ccr.2008.11.01610.1016/j.ccr.2008.11.016Search in Google Scholar
[11] Giroud-Godquin, A. M. (1998). My 20 years of research in the chemistry of metal containing liquid crystals. Coordination Chemistry Reviews, 178-180, 1485–1499. DOI: 10.1016/s0010-8545(98)00081-2. http://dx.doi.org/10.1016/S0010-8545(98)00081-210.1016/S0010-8545(98)00081-2Search in Google Scholar
[12] Handa, M., Ishida, H., Ito, K., Adachi, T., Ikeue, T., Hiromitsu, I., Mikuriya, M., & Kasuga, K. (2008). Synthesis and magnetic properties of polymeric complexes containing ruthenium(II)-ruthenium(III) tetracarboxylato units linked by cyanato, thiocyanato, and selenocyanato ligands. Chemical Papers, 62, 410–416. DOI: 10.2478/s11696-008-0049-4. http://dx.doi.org/10.2478/s11696-008-0049-410.2478/s11696-008-0049-4Search in Google Scholar
[13] Inokuchi, H., Saito, G., Wu, P., Seki, K., Tang, T. B., Mori, T., Imaeda, K., Enoki, T., Higuchi, Y., Inaka, K., & Yasuoka, N. (1986). A novel type of organic semiconductors: Molecular fastener. Chemistry Letters, 15, 1263–1266. DOI: 10.1246/cl.1986.1263. http://dx.doi.org/10.1246/cl.1986.126310.1246/cl.1986.1263Search in Google Scholar
[14] Ishida, H., Handa, M., Hiromitsu, I., Ujiie, S., & Mikuriya, M. (2007). Synthesis and magnetic properties of polymeric complexes of ruthenium(II,III) 3,4,5-trioctanoxybenzoate linked by chloro and cyanato ligands with liquid-crystalline behavior. In M. Melník, J. Šima, & M. Tatarko (Eds.), Achievements in coordination, bioinorganic and applied inorganic chemistry (pp. 687–693). Bratislava, Slovakia: Slovak University of Technology Press. Search in Google Scholar
[15] Ishida, H., Handa, M., Hiromitsu, I., & Mikuriya, M. (2009a). Synthesis, crystal structure, and spectral and magnetic properties of chloro-bridged chain complex of dinuclear ruthenium(II,III) 3,4,5-triethoxybenzoate. Chemistry Journal of Moldova, 4, 90–96. 10.19261/cjm.2009.04(1).06Search in Google Scholar
[16] Ishida, H., Handa, M., Hiromitsu, I., & Mikuriya, M. (2009b). Synthesis, magnetic and spectral properties, and crystal structure of mixed-valence ruthenium(II,III) 3,4,5-tributanoxybenzoate. In M. Melník, P. Segľa, & M. Tatarko (Eds.), Insights into coordination, bioinorganic and applied inorganic chemistry (pp. 197–203). Bratislava, Slovakia: Slovak University of Technology Press. 10.19261/cjm.2009.04(1).06Search in Google Scholar
[17] Ishida, H., Handa, M., Ikeue, T., Taguchi, J., & Mikuriya, M. (2010). Synthesis, crystal structure, and 1H NMR spectra of chlorido-bridged chain complex of dinuclear ruthenium( II,III) 3,4,5-tri(ethoxy-d5)benzoate. Chemical Papers, 64, 767–775. DOI: 10.2478/s11696-010-0071-1. http://dx.doi.org/10.2478/s11696-010-0071-110.2478/s11696-010-0071-1Search in Google Scholar
[18] Jiménez-Aparicio, R., Urbanos, F. A., & Arrieta, J. M. (2001). Magnetic properties of diruthenium(II,III) carboxylate compounds with large zero-field splitting and strong antiferromagnetic coupling. Inorganic Chemistry, 40, 613–619. DOI: 10.1021/ic0001154. http://dx.doi.org/10.1021/ic000115410.1021/ic0001154Search in Google Scholar
[19] Kimizuka, N. (2005). Soluble amphiphilic nanostructures and potential applications. In A. Ciferri (Ed.), Supramolecular polymers (2nd ed., pp. 481–507). Boca Raton, FL, USA: Taylor & Francis. Search in Google Scholar
[20] Mikuriya, M., Yoshioka, D., & Handa, M. (2006). Magnetic interactions in one-, two-, and three-dimensional assemblies of dinuclear ruthenium carboxylates. Coordination Chemistry Reviews, 250, 2194–2211. DOI: 10.1016/j.ccr.2006.01.011. http://dx.doi.org/10.1016/j.ccr.2006.01.01110.1016/j.ccr.2006.01.011Search in Google Scholar
[21] Ohta, K., Ikejima, M., Moriya, M., Hasebe, H., & Yamamoto, I. (1998). Disk-like liquid crystals of tansition metal complexes. Part 20 — pursuit of chemistry to directly visualize van der Waals interactions. Journal of Material Chemistry, 8, 1971–1977. DOI: 10.1039/a800894i. http://dx.doi.org/10.1039/a800894i10.1039/A800894ISearch in Google Scholar
[22] Percec, V., Ahn, C. H., Bera, T. K., Ungar, G., & Yeardley, D. J. P. (1999). Coassembly of a hexagonal columnar liquid crystalline superlattice from polymer(s) coated with a threecylindrical bundle supramolecular dendrimer. Chemistry — A European Journal, 5, 1070–1083. DOI: 10.1002/(sici)1521-3765(19990301)5:3〈1070::aid-chem1070〉3.0.co;2-9. http://dx.doi.org/10.1002/(SICI)1521-3765(19990301)5:3<1070::AID-CHEM1070>3.0.CO;2-910.1002/(SICI)1521-3765(19990301)5:3<1070::AID-CHEM1070>3.0.CO;2-9Search in Google Scholar
[23] Rusjan, M., Donnio, B., Heinrich, B., Cukiernik, F. D., & Guillon, D. (2002). Lyotropic behavior of diruthenium(II,III) alkoxybenzoates in dodecane. Langmuir, 18, 10116–10121. DOI: 10.1021/la026510j. http://dx.doi.org/10.1021/la026510j10.1021/la026510jSearch in Google Scholar
[24] Rusjan, M., Sileo, E. E., & Cukiernik, F. D. (2003). Thermal stability of mixed-valent diruthenium (II,III) carboxylates. Solid State Ionics, 159, 389–396. DOI: 10.1016/s0167-2738(03)00079-1. http://dx.doi.org/10.1016/S0167-2738(03)00079-110.1016/S0167-2738(03)00079-1Search in Google Scholar
[25] Sawada, Y., Yamamoto, Y., Nishio, M., Kosaka, W., Hayashi, Y., & Miyasaka, H. (2012). Inorganic frameworks made by combining paddlewheel diruthenium(II, III) complexes and polyoxometalate clusters. Chemistry Letters, 41, 212–214. DOI: 10.1246/cl.2012.212. http://dx.doi.org/10.1246/cl.2012.21210.1246/cl.2012.212Search in Google Scholar
[26] Sheldrick, G. M. (1997). SHELXS-97 [computer software]. Göttingen, Germany: University of Göttingen. Search in Google Scholar
[27] Stephenson, T. A., & Wilkinson, G. (1966). New ruthenium carboxylate complexes. Journal of Inorganic and Nuclear Chemistry, 28, 2285–2291. DOI: 10.1016/0022-1902(66)80118-5. http://dx.doi.org/10.1016/0022-1902(66)80118-510.1016/0022-1902(66)80118-5Search in Google Scholar
[28] Taira, A., & Matsushita, N. (2003). Mixed-valence state of a one-dimensional platinum complex with a counter ion having two alkyl chains and its liquid crystal phase. Molecular Crystals and Liquid Crystals, 379, 297–302. DOI: 10.1080/713738666. http://dx.doi.org/10.1080/71373866610.1080/713738666Search in Google Scholar
[29] Takaishi, S., Takamura, M., Kajiwara, T., Miyasaka, H., Yamashita, M., Iwata, M., Matsuzaki, H., Okamoto, H., Tanaka, H., Kuroda, S., Nishikawa, H., Oshio, H., Kato, K., & Takata, M. (2008). Charge-density-wave to Mott-Hubbard phase transition in quasi-one-dimensional bromo-bridged Pd compounds. Journal of the American Chemical Society, 130, 12080–12084. DOI: 10.1021/ja8032026. http://dx.doi.org/10.1021/ja803202610.1021/ja8032026Search in Google Scholar PubMed
[30] Telser, J., & Drago, R. S. (1984). Reinvestigation of the electronic and magnetic properties of ruthenium butyrate chloride. Inorganic Chemistry, 23, 3114–3120. DOI: 10.1021/ic00188a019. http://dx.doi.org/10.1021/ic00188a01910.1021/ic00188a019Search in Google Scholar
[31] Telser, J., & Drago, R. S. (1985). Correction: Reinvestigation of the electronic and magnetic properties of ruthenium butyrate chloride. Inorganic Chemistry, 24, 4765. DOI: 10.1021/ic00220a601. http://dx.doi.org/10.1021/ic00220a60110.1021/ic00220a601Search in Google Scholar
[32] Terazzi, E., Torelli, S., Bernardinelli, G., Rivera, J. P., Bénech, J. M., Bourgogne, C., Donnio, B., Guillon, D., Imbert, D., Bünzli, J. C. G., Pinto, A., Jeannerat, D., & Piguet, C. (2005). Molecular control of macroscopic cubic, columnar, and lamellar organizations in luminescent lanthanide-containing thermotropic liquid crystals. Journal of the American Chemical Society, 127, 888–903. DOI: 10.1021/ja0446101. http://dx.doi.org/10.1021/ja044610110.1021/ja0446101Search in Google Scholar PubMed
[33] Zelcer, A., Chaia, Z. D., Cukiernik, F. D., Castellano, E. E., & Piro, O. E. (2002). A liquid crystal derived from ruthenium(II,III) and a long-chain carboxylate. Acta Crystallographica Section C: Crystal Structure Communications, 58, m144–m146. DOI: 10.1107/s0108270101021540. http://dx.doi.org/10.1107/S010827010102154010.1107/S0108270101021540Search in Google Scholar
© 2013 Institute of Chemistry, Slovak Academy of Sciences
Articles in the same Issue
- Flexibility of active-site gorge aromatic residues and non-gorge aromatic residues in acetylcholinesterase
- Influence of trace elements supplementation on the production of recombinant frutalin by Pichia pastoris KM71H in fed-batch process
- Mesoporous nanocrystalline MgAl2O4: A new heterogeneous catalyst for the synthesis of 2,4,6-triarylpyridines under solvent-free conditions
- Effective immobilisation of lipase to enhance esterification potential and reusability
- Hydrogen production by steam reforming of glycerol over Ni/Ce/Cu hydroxyapatite-supported catalysts
- Solvent-free acetylation and tetrahydropyranylation of alcohols catalyzed by recyclable sulfonated ordered nanostructured carbon
- Pertraction of methylene blue using a mixture of D2EHPA/M2EHPA and sesame oil as a liquid membrane
- Selective separation of essential phenolic compounds from olive oil mill wastewater using a bulk liquid membrane
- Evaluation of temperature effect on growth rate of Lactobacillus rhamnosus GG in milk using secondary models
- Fastener effect on magnetic properties of chain compounds of dinuclear ruthenium carboxylates
- Synthesis of novel fluorene-functionalised nanoporous silica and its luminescence behaviour in acidic media
- d-Glucosamine as an efficient and green additive for palladium-catalyzed Heck reaction
- Anti-oxidative properties of bi-1,2,4-triazine bisulphides
Articles in the same Issue
- Flexibility of active-site gorge aromatic residues and non-gorge aromatic residues in acetylcholinesterase
- Influence of trace elements supplementation on the production of recombinant frutalin by Pichia pastoris KM71H in fed-batch process
- Mesoporous nanocrystalline MgAl2O4: A new heterogeneous catalyst for the synthesis of 2,4,6-triarylpyridines under solvent-free conditions
- Effective immobilisation of lipase to enhance esterification potential and reusability
- Hydrogen production by steam reforming of glycerol over Ni/Ce/Cu hydroxyapatite-supported catalysts
- Solvent-free acetylation and tetrahydropyranylation of alcohols catalyzed by recyclable sulfonated ordered nanostructured carbon
- Pertraction of methylene blue using a mixture of D2EHPA/M2EHPA and sesame oil as a liquid membrane
- Selective separation of essential phenolic compounds from olive oil mill wastewater using a bulk liquid membrane
- Evaluation of temperature effect on growth rate of Lactobacillus rhamnosus GG in milk using secondary models
- Fastener effect on magnetic properties of chain compounds of dinuclear ruthenium carboxylates
- Synthesis of novel fluorene-functionalised nanoporous silica and its luminescence behaviour in acidic media
- d-Glucosamine as an efficient and green additive for palladium-catalyzed Heck reaction
- Anti-oxidative properties of bi-1,2,4-triazine bisulphides