Abstract
Fluorene-functionalised nanoporous silica (FL-NH2-SBA-15) was prepared using the post-synthesis grafting method of SBA-15. The material thus obtained was characterised by means of small- and wide-angle X-ray diffraction, nitrogen adsorption-desorption, Fourier transform infrared spectroscopy, Raman spectroscopy, thermogravimetric analysis, and elemental analysis. The results showed that the organised structure is preserved after the post-grafting procedure. Surface area and pore-size decreased by attaching functional groups to the pore surface. In addition, the pore volume was reduced with functionalisation. The amount of fluorene grafted onto the surface of SBA-15 was 0.55 mmol with a yield of approximately 46 %. The emission spectra of FL-NH2-SBA-15 in acidic media were studied and are discussed in detail. The structural change between FL-NH2-SBA-15 and the protonated form might be an effective candidate for acid-dependent molecular-sensor models for advanced application in molecular sensors in the future.
[1] Armarego, W. L. F., & Perrin, D. D. (1996). Purification of laboratory chemicals (6th ed.). Burlington, MA, USA: Elsevier. Search in Google Scholar
[2] Badiei, A., Goldooz, H., & Ziarani, G. M. (2011). A novel method for preparation of 8-hydroxyquinoline functionalized mesoporous silica: Aluminum complexes and photoluminescence studies. Applied Surface Science, 257, 4912–4918. DOI: 10.1016/j.apsusc.2010.12.146. http://dx.doi.org/10.1016/j.apsusc.2010.12.14610.1016/j.apsusc.2010.12.146Search in Google Scholar
[3] Bagshaw, S. A., Prouzet, E., & Pinnavaia, T. J. (1995). Templating of mesoporous molecular sieves by nonionic polyethylene oxide surfactants. Science, 269, 1242–1244. DOI: 10.1126/science.269.5228.1242. http://dx.doi.org/10.1126/science.269.5228.124210.1126/science.269.5228.1242Search in Google Scholar
[4] Beck, J. S., Vartuli, J. C., Roth, J. W., Leonowicz, M. E., Kresge, C. T., Schmitt, K. D., Chu, C. T. W., Olson, D. H., Sheppard, E. W., McCullen, S. B., Higgins, J. B., & Schlenker, J. L. (1992). A new family of mesoporous molecular sieves prepared with liquid crystal templates. Journal of the American Chemical Society, 114, 10834–10843. DOI: 10.1021/ja00053a020. http://dx.doi.org/10.1021/ja00053a02010.1021/ja00053a020Search in Google Scholar
[5] Belfield, K. D., Morales, A. R., Hales, J. M., Hagan, D. J., Van Stryland, E. W., Chapela, V. M., & Percino, J. (2004). Linear and two-photon photophysical properties of a series of symmetrical diphenylaminofluorenes. Chemistry of Materials, 16, 2267–2273. DOI: 10.1021/cm035253g. http://dx.doi.org/10.1021/cm035253g10.1021/cm035253gSearch in Google Scholar
[6] Beltrán, J. L., Ferrer, R., & Guiteras, J. (1998). Multivariate calibration of polycyclic aromatic hydrocarbon mixtures from excitation-emission fluorescence spectra. Analitica Chimica Acta, 373, 311–319. DOI: 10.1016/s0003-2670(98)00420-6. http://dx.doi.org/10.1016/S0003-2670(98)00420-610.1016/S0003-2670(98)00420-6Search in Google Scholar
[7] Cheng, K., & Landry, C. C. (2007). Diffusion-based deprotection in mesoporous materials: A strategy for differential functionalization of porous silica particles. Journal of the American Chemical Society, 129, 9674–9685. DOI: 10.1021/ja070598b. http://dx.doi.org/10.1021/ja070598b10.1021/ja070598bSearch in Google Scholar PubMed
[8] Czarnik, A. W. (1994). Chemical communication in water using fluorescent chemosensors. Accounts of Chemical Research, 27, 302–308. DOI: 10.1021/ar00046a003. http://dx.doi.org/10.1021/ar00046a00310.1021/ar00046a003Search in Google Scholar
[9] Egelhaaf, H. J., Holder, E., Herman, P., Mayer, H. A., Oelkrug, D., & Lindner, D. (2001). Synthesis, characterisation, and fluorescence spectroscopic mobility studies of fluorene labeled inorganic-organic hybrid polymers. Journal of Material Chemistry, 11, 2445–2452. DOI: 10.1039/b102088i. http://dx.doi.org/10.1039/b102088i10.1039/b102088iSearch in Google Scholar
[10] Fitilis, I., Fakis, M., Polyzos, I., Giannetas, V., Persephonis, P., Vellis, P., & Mikroyannidi, J. (2007). A two-photon absorption study of fluorene and carbazole derivatives. The role of the central core and the solvent polarity. Chemical Physics Letters, 447, 300–304. DOI: 10.1016/j.cplett.2007.09.044. http://dx.doi.org/10.1016/j.cplett.2007.09.04410.1016/j.cplett.2007.09.044Search in Google Scholar
[11] Hamoudi, S., El-Nemr, A., & Belkacemi, K. (2010). Adsorptive removal of dihydrogenphosphate ion from aqueous solutions using mono, di- and tri-ammonium-functionalized SBA-15. Journal of Colloid and Interface Science, 343, 615–621. DOI: 10.1016/j.jcis.2009.11.070. http://dx.doi.org/10.1016/j.jcis.2009.11.07010.1016/j.jcis.2009.11.070Search in Google Scholar PubMed
[12] Jaroniec, C. P., Kruk, M., Jaroniec, M., & Sayari, A. (1998). Tailoring surface and structural properties of MCM-41 silicas by bonding organosilanes. Journal of Physical Chemistry B, 102, 5503–5510. DOI: 10.1021/jp981304z. http://dx.doi.org/10.1021/jp981304z10.1021/jp981304zSearch in Google Scholar
[13] Khaniani, Y., Badiei, A., & Ziarani, G. M. (2012). Application of clickable nanoporous silica surface for immobilization of ionic liquids. Journal of Materials Research, 27, 932–938. DOI: 10.1557/jmr.2011.435. http://dx.doi.org/10.1557/jmr.2011.43510.1557/jmr.2011.435Search in Google Scholar
[14] Kresge, C. T., Leonowicz, M. E., Roth, W. J., Vartuli, J. C., & Beck, J. S. (1992). Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism. Nature, 359, 710–712. DOI: 10.1038/359710a0. http://dx.doi.org/10.1038/359710a010.1038/359710a0Search in Google Scholar
[15] Kruk, M., Jaroniec, M., Ko, C. H., & Ryoo, R. (2000). Characterization of the porous structure of SBA-15. Chemistry of Materials, 12, 1961–1968. DOI: 10.1021/cm000164e. http://dx.doi.org/10.1021/cm000164e10.1021/cm000164eSearch in Google Scholar
[16] Lakowicz, J. (1999). Principles of fluorescence spectroscopy (2nd ed.). New York, NY, USA: Kluwer Academic, Plenum Publishers. http://dx.doi.org/10.1007/978-1-4757-3061-610.1007/978-1-4757-3061-6Search in Google Scholar
[17] Minabe, M., Tomiyama, T., Nozawa, T., Noguchi, M., Nakao, A., Oba, T., & Kimura, T. (2001). Structure and properties of 9-(cycloheptatrienylidene)fluorene and its derivatives. Bulletin of the Chemical Society of Japan, 74, 1093–1100. DOI: 10.1246/bcsj.74.1093. http://dx.doi.org/10.1246/bcsj.74.109310.1246/bcsj.74.1093Search in Google Scholar
[18] Prassana de Silva, A., Moody, T. S., & Wright, G. D. (2009). Fluorescent PET (Photoinduced Electron Transfer) sensors as potent analytical tools. Analyst, 134, 2385–2393. DOI: 10.1039/b912527m. http://dx.doi.org/10.1039/b912527m10.1039/b912527mSearch in Google Scholar
[19] Sampey, J. R., & Reid, E. E. (1947). Photochemical bromination of fluorene. Journal of the American Chemical Society, 69, 234–235. DOI: 10.1021/ja01194a015. http://dx.doi.org/10.1021/ja01194a01510.1021/ja01194a015Search in Google Scholar
[20] Sing, K. S. W., Everett, D. H., Haul, R. A. W., Moscou, L., Pierotti, R. A., Rouquérol, J., & Siemieniewska, T. (1985). Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity. Pure and Applied Chemistry, 57, 603–619. DOI: 10.1351/pac198557040603. http://dx.doi.org/10.1351/pac19855704060310.1351/pac198557040603Search in Google Scholar
[21] Socrates, G. (2004). Infraredand Raman characteristic group frequencies (3rd ed.). New York, NY, USA: Wiley. Search in Google Scholar
[22] Stein, A., Melde, B. J., & Schroden, R. C. (2000). Hybrid inorganic-organic mesoporous silicates-nanoscopic reactors coming of age. Advanced Materials, 12, 1403–1409. DOI: 10.1002/1521-4095(200010)12:19〈1403::aid-adma1403〉3.0.co;2-x. http://dx.doi.org/10.1002/1521-4095(200010)12:19<1403::AID-ADMA1403>3.0.CO;2-X10.1002/1521-4095(200010)12:19<1403::AID-ADMA1403>3.0.CO;2-XSearch in Google Scholar
[23] Taguchi, A., & Schüth, F. (2005). Ordered mesoporous materials in catalysis. Microporous and Mesoporous Materials, 77, 1–45. DOI: 10.1016/j.micromeso.2004.06.030. http://dx.doi.org/10.1016/j.micromeso.2004.06.03010.1016/j.micromeso.2004.06.030Search in Google Scholar
[24] Tanev, P. T., & Pinnavaia, T. J. (1995). A neutral templating route to mesoporous molecular sieves. Science, 267, 865–867. DOI: 10.1126/science.267.5199.865. http://dx.doi.org/10.1126/science.267.5199.86510.1126/science.267.5199.865Search in Google Scholar
[25] Trasatti, S. (1980). Metal-solvent interaction at electrode/solution interfaces reactivity scale in different solvents and photoemission threshold. Colloids and Surfaces, 1, 173–189. DOI: 10.1016/0166-6622(80)80004-7. http://dx.doi.org/10.1016/0166-6622(80)80004-710.1016/0166-6622(80)80004-7Search in Google Scholar
[26] Vinu, A., Hossain, K. Z., & Ariga, K. (2005). Recent advances in functionalization of mesoporous silica. Journal of Nanoscience and Nanotechnology, 5, 347–371. DOI: 10.1166/jnn.2005.089. http://dx.doi.org/10.1166/jnn.2005.08910.1166/jnn.2005.089Search in Google Scholar
[27] Vogt, B., & Schulman, S. G. (1982). Anomalous fluorescence of 9-aminofluorene. Chemical Physics Letters, 89, 320–323. DOI: 10.1016/0009-2614(82)83507-0. http://dx.doi.org/10.1016/0009-2614(82)83507-010.1016/0009-2614(82)83507-0Search in Google Scholar
[28] Wang, Z. X., Li, W., & Lu, P. (2004). Acidic-sensing property of 9-(cycloheptatrienylidene)fluorene by UV-Vis spectroscopy. Sensors and Actuators B: Chemical, 99, 264–266. 10.1016/j.snb.2003.11.021. http://dx.doi.org/10.1016/j.snb.2003.11.02110.1016/j.snb.2003.11.021Search in Google Scholar
[29] Wang, Z. X., Xing, Y. J., Shao, H. X., Lu, P., & Weber, W. P. (2005a). Synthesis and characterization of 9-(cycloheptatrienylidene)fluorene derivatives: Acid-triggered “switch on” of fluorophores. Organic Letters, 7, 87–90. DOI: 10.1021/ol047847a. http://dx.doi.org/10.1021/ol047847a10.1021/ol047847aSearch in Google Scholar PubMed
[30] Wang, Z. X., Zheng, G. R., & Lu, P. (2005b). 9-(Cycloheptatrienylidene)-fluorene derivative: Remarkable ratiometric pH sensor and computing switch with NOR logic gate. Organic Letters, 7, 3669–3672. DOI: 10.1021/ol051211h. http://dx.doi.org/10.1021/ol051211h10.1021/ol051211hSearch in Google Scholar PubMed
[31] Zhao, D. Y, Huo, Q. S., Feng, J. L., Chmelka, B. F., & Stucky, G. D. (1998a). Nonionic triblock and star diblock copolymer and oligomeric surfactant syntheses of highly ordered, hydrothermally stable, mesoporous silica structures. Journal of the American Chemical Society, 120, 6024–6036. DOI: 10.1021/ja974025i. http://dx.doi.org/10.1021/ja974025i10.1021/ja974025iSearch in Google Scholar
[32] Zhao, D. Y., Feng, J. L., Huo, Q. S., Melosh, N., Fredrickson, G. H., Chmelka, B. F., & Stucky, G. D. (1998b). Triblock copolymer syntheses of mesoporous silica with periodic 50 to 300 angstrom pores. Science, 279, 548–552. DOI: 10.1126/science.279.5350.548. http://dx.doi.org/10.1126/science.279.5350.54810.1126/science.279.5350.548Search in Google Scholar PubMed
[33] Zheng, G. R., Wang, Z. X., Tang, L., Lu, P., & Weber, W. P. (2007). Color tunable, ratiometric pH sensor for high and low pH values base on 9-(cycloheptatrienylidene)fluorene derivatives. Sensors and Actuators B: Chemical, 122, 389–396. DOI: 10.1016/j.snb.2006.06.009. http://dx.doi.org/10.1016/j.snb.2006.06.00910.1016/j.snb.2006.06.009Search in Google Scholar
© 2013 Institute of Chemistry, Slovak Academy of Sciences
Articles in the same Issue
- Flexibility of active-site gorge aromatic residues and non-gorge aromatic residues in acetylcholinesterase
- Influence of trace elements supplementation on the production of recombinant frutalin by Pichia pastoris KM71H in fed-batch process
- Mesoporous nanocrystalline MgAl2O4: A new heterogeneous catalyst for the synthesis of 2,4,6-triarylpyridines under solvent-free conditions
- Effective immobilisation of lipase to enhance esterification potential and reusability
- Hydrogen production by steam reforming of glycerol over Ni/Ce/Cu hydroxyapatite-supported catalysts
- Solvent-free acetylation and tetrahydropyranylation of alcohols catalyzed by recyclable sulfonated ordered nanostructured carbon
- Pertraction of methylene blue using a mixture of D2EHPA/M2EHPA and sesame oil as a liquid membrane
- Selective separation of essential phenolic compounds from olive oil mill wastewater using a bulk liquid membrane
- Evaluation of temperature effect on growth rate of Lactobacillus rhamnosus GG in milk using secondary models
- Fastener effect on magnetic properties of chain compounds of dinuclear ruthenium carboxylates
- Synthesis of novel fluorene-functionalised nanoporous silica and its luminescence behaviour in acidic media
- d-Glucosamine as an efficient and green additive for palladium-catalyzed Heck reaction
- Anti-oxidative properties of bi-1,2,4-triazine bisulphides
Articles in the same Issue
- Flexibility of active-site gorge aromatic residues and non-gorge aromatic residues in acetylcholinesterase
- Influence of trace elements supplementation on the production of recombinant frutalin by Pichia pastoris KM71H in fed-batch process
- Mesoporous nanocrystalline MgAl2O4: A new heterogeneous catalyst for the synthesis of 2,4,6-triarylpyridines under solvent-free conditions
- Effective immobilisation of lipase to enhance esterification potential and reusability
- Hydrogen production by steam reforming of glycerol over Ni/Ce/Cu hydroxyapatite-supported catalysts
- Solvent-free acetylation and tetrahydropyranylation of alcohols catalyzed by recyclable sulfonated ordered nanostructured carbon
- Pertraction of methylene blue using a mixture of D2EHPA/M2EHPA and sesame oil as a liquid membrane
- Selective separation of essential phenolic compounds from olive oil mill wastewater using a bulk liquid membrane
- Evaluation of temperature effect on growth rate of Lactobacillus rhamnosus GG in milk using secondary models
- Fastener effect on magnetic properties of chain compounds of dinuclear ruthenium carboxylates
- Synthesis of novel fluorene-functionalised nanoporous silica and its luminescence behaviour in acidic media
- d-Glucosamine as an efficient and green additive for palladium-catalyzed Heck reaction
- Anti-oxidative properties of bi-1,2,4-triazine bisulphides