Home Provenance study of volcanic glass using 266–1064 nm orthogonal double pulse laser induced breakdown spectroscopy
Article
Licensed
Unlicensed Requires Authentication

Provenance study of volcanic glass using 266–1064 nm orthogonal double pulse laser induced breakdown spectroscopy

  • Aleš Hrdlička EMAIL logo , Lubomír Prokeš , Michaela Galiová , Karel Novotný , Anna Vitešníková , Tereza Helešicová and Viktor Kanický
Published/Copyright: February 14, 2013
Become an author with De Gruyter Brill

Abstract

Double pulse laser induced breakdown spectroscopy in orthogonal configuration was used for the analysis of twelve samples of volcanic glass. Raw material and artifact samples originated from Czech, Slovak, German, Hungarian, Greek, Turkish, and Ukrainian sites. The primary 266 nm laser beam was focused onto a sample area of about 0.1 mm in diameter at the optimised energy of 10 mJ resulting in only very slight sample damage, almost unrecognizable even by a microscope. The secondary 1064 nm laser beam, positioned parallel to the sample surface and focused onto the intersection with the primary beam, induced a spark with enhanced radiation at the optimised energy of 100 mJ. Measurement of emission lines selected on basis of chemical composition, signal intensity, signal-to-background ratio, and minimum interference from the surrounding spectra: Si(I) 288.16 nm, Mg(II) 279.55 nm, 280.27 nm, Mg(I) 285.21 nm, Ca(II) 317.93 nm, Na(I) 589.59 nm, Al(I) 308.22 nm, Fe(II) 259.94 nm, Ti(II) 334.94 nm, Sr(II) 407.77 nm, Ba(II) 455.40 nm, K(I) 769.90 nm, provided experimental data sufficiently sensitive to differentiate the properties of the studied samples. Rare earth elements were not detected even though the double pulse technique is more sensitive than the single pulse variant. Visualisation methods of multidimensional statistical analyses such as radar chart, Chernoff faces, scatterplots, and the Spearman correlation matrix provided successful differentiation of the sample groups and/or particular samples by their origin.

[1] Abbés, F., Bellot-Gurlet, L., Bressy, C., Cauvin, M. C., Gratuze, B., & Poupeau, G. (2001). Nouvelles recherches sur l’obsidienne de Cheikh Hassan (vallée de l’Euphrate, Syrie) au Néolithique: PPNA et PPNB ancien. Syria, 78, 5–17. http://dx.doi.org/10.3406/syria.2001.772710.3406/syria.2001.7727Search in Google Scholar

[2] Abdel-Salam, Z. A., Nanjing, Z., Anglos, D., & Harith. M. A. (2009). Effect of experimental conditions on surface hardness measurements of calcified tissues via LIBS. Applied Physics B, 94, 141–147. DOI: 10.1007/s00340-008-3304-z. http://dx.doi.org/10.1007/s00340-008-3304-z10.1007/s00340-008-3304-zSearch in Google Scholar

[3] Argote-Espino, D., Solé, J., Lopéz-García, P., & Sterpone, O. (2012). Obsidian subsource identification in the Sierra de Pachuca and Otumba volcanic regions, Central Mexico, by ICP-MS and DBSCAN statistical analysis. Geoarchaeology, 27, 48–62. DOI: 10.1002/gea.21389. http://dx.doi.org/10.1002/gea.2138910.1002/gea.21389Search in Google Scholar

[4] Barca, D., Lucarini, G., & Fedele, F. G. (2012). The provenance of obsidian artefacts from the Wd Ath-Thayyilah 3 neolithic site (Eastern Yemen Plateau) by LA-ICP-MS. Archaeometry, 54, 603–622. DOI: 10.1111/j.1475-4754.2011.00643.x. http://dx.doi.org/10.1111/j.1475-4754.2011.00643.x10.1111/j.1475-4754.2011.00643.xSearch in Google Scholar

[5] Breitkreuz, Ch., Hoffmann, U., Renno, A. D., & Stanek, K. (2008). Volcanic systems within the European permocarboniferous intermontane basins and their basement. Wissenschaftliche Mitteilungen, 38, 1–50. Search in Google Scholar

[6] Cremers, D. A., & Radziemski, L. J. (2006). Handbook of laserinduced breakdown spectroscopy. Chichester, UK: Wiley. http://dx.doi.org/10.1002/047009301310.1002/0470093013Search in Google Scholar

[7] Frahm, E. (2012a). Non-destructive sourcing of Bronze age Near Eastern obsidian artefacts: Redeveloping and reassessing electron microprobe analysis for obsidian sourcing. Archaeometry, 54, 623–642. DOI:10.1111/j.1475-4754.2011.00648.x. http://dx.doi.org/10.1111/j.1475-4754.2011.00648.x10.1111/j.1475-4754.2011.00648.xSearch in Google Scholar

[8] Frahm, E. (2012b). Distinguishing Nemrut Dağ and Bingöl A obsidians: geochemical and landscape differences and the archaeological implications. Journal of Archaeological Science, 39, 1436–1444. DOI:10.1016/j.jas.2011.12.038. http://dx.doi.org/10.1016/j.jas.2011.12.03810.1016/j.jas.2011.12.038Search in Google Scholar

[9] Galiová, M., Kaiser, J., Novotný, K., Ivanov, M., Nývltová Fišáková, M., Mancini, L., Tromba, G., Vaculovič, T., Liška, M., & Kanický, V. (2010). Investigation of the osteitis deformans phases in snake vertebrae by double-pulse laserinduced breakdown spectroscopy. Analytical and Bioanalytical Chemistry, 398, 1095–1107. DOI: 10.1007/s00216-010-3976-1. http://dx.doi.org/10.1007/s00216-010-3976-110.1007/s00216-010-3976-1Search in Google Scholar PubMed

[10] Gottfried, J. L., Harmon, R. S., De Lucia, F. C., & Miziolek, A. W. (2009). Multivariate analysis of laser-induced breakdown spectroscopy chemical signatures for geomaterial classification. Spectrochimica Acta Part B, 64, 1009–1019. DOI:10.1016/j.sab.2009.07.005. http://dx.doi.org/10.1016/j.sab.2009.07.00510.1016/j.sab.2009.07.005Search in Google Scholar

[11] Gratuze, B. (1999). Obsidian characterization by laser ablation ICP-MS and its application to prehistoric trade in the Mediterranean and the Near East: Sources and distribution of obsidian within the Aegean and Anatolia. Journal of Archaeological Science, 26, 869–881. DOI:10.1006/jasc.1999.0459. http://dx.doi.org/10.1006/jasc.1999.045910.1006/jasc.1999.0459Search in Google Scholar

[12] Grave, P., Attenbrow, V., Sutherland, L., Pogson, R., & Forster, N. (2012). Non-destructive pXRF of mafic stone tools. Journal of Archaeological Science, 39, 1674–1686. DOI:10.1016/j.jas.2011.11.011. http://dx.doi.org/10.1016/j.jas.2011.11.01110.1016/j.jas.2011.11.011Search in Google Scholar

[13] Hancock, R. G. V., & Carter, T. (2010). How reliable are our published archaeometric analyses? Effects of analytical techniques through time on the elemental analysis of obsidians. Journal of Archaeological Science, 37, 243–250. DOI:10.1016/j.jas.2009.10.004. http://dx.doi.org/10.1016/j.jas.2009.10.00410.1016/j.jas.2009.10.004Search in Google Scholar

[14] Heide, K., & Heide, G. (2011). Vitreous state in nature—origin and properties. Chemie der Erde — Geochemistry, 71, 305–335. DOI:10.1016/j.chemer.2011.10.001. http://dx.doi.org/10.1016/j.chemer.2011.10.00110.1016/j.chemer.2011.10.001Search in Google Scholar

[15] Horňáčková, M., Grolmusová, Z., Horňáček, M., Rakovský, J., Hudec, P., & Veis, P. (2012). Calibration analysis of zeolites by laser induced breakdown spectroscopy. Spectrochimica Acta Part B: Atomic Spectroscopy, 74–75, 119–123. DOI:10.1016/j.sab.2012.07.003. 10.1016/j.sab.2012.07.003Search in Google Scholar

[16] Kasztovszky, Z., & Biró, K. T. (2004). Fingerprinting Carpathian obsidians by PGAA: First results on geological and archaeological specimens. In Proceedings of the 34th International Symposium on Archaeometry, May 3–7, 2004 (pp. 301–308). Zaragoza, Spain: Institución “Fernando el Católico”. Search in Google Scholar

[17] Konečný, P., Ulrych, J., Schovánek, P., Huraiová, M., & Řanda, Z. (2006). Upper mantle xenoliths from the Pliocene Kozákov volcano (NE Bohemia): P-T-f O2 and geochemical constraints. Geologica Carpathica, 57, 379–396. Search in Google Scholar

[18] Oddone, M., Márton, P., Bigazzi, G., & Biró, K. T. (1999). Chemical characterisations of Carpathian obsidian sources by instrumental and epithermal neutron activation analysis. Journal of Radioanalytical and Nuclear Chemistry, 240, 147–153. DOI: 10.1007/bf02349147. http://dx.doi.org/10.1007/BF0234914710.1007/BF02349147Search in Google Scholar

[19] Přichystal, A. (2009). Kamenné suroviny v pravěku východní části střední Evropy. Brno, Czech Republic: Masaryk University, Munipress. (in Czech) Search in Google Scholar

[20] Remus, J. J., Gottfried, J. L., Harmon, R. S., Draucker, A., Baron, D., & Yohe, R. (2010). Archaeological applications of laser-induced breakdown spectroscopy: an example from the Coso Volcanic Field, California, using advanced statistical signal processing analysis. Applied Optics, 49, C120–C131. DOI: 10.1364/ao.49.00c120. http://dx.doi.org/10.1364/AO.49.00C12010.1364/AO.49.00C120Search in Google Scholar

[21] Remus, J. J., Harmon, R. S., Hark, R. R., Haverstock, G., Baron, D., Potter, I. K., Bristol, S. K., & East, L. J. (2012). Advanced signal processing analysis of laserinduced breakdown spectroscopy data for the discrimination of obsidian sources. Applied Optics, 51, B65–B73. DOI: 10.1364/ao.51.000b65. http://dx.doi.org/10.1364/AO.51.000B6510.1364/AO.51.000B65Search in Google Scholar PubMed

[22] Russo, R. E., Mao, X. L., Liu, C., & Gonzalez, J. (2004). Laser assisted plasma spectrochemistry: laser ablation. Journal of Analytical Atomic Spectrometry, 19, 1084–1089. DOI: 10.1039/b403368j. http://dx.doi.org/10.1039/b403368j10.1039/b403368jSearch in Google Scholar

[23] Shackley, S. M. (2005). Obsidian: Geology and archaeology in the North American Southwest. Tucson, AZ, USA: The University of Arizona Press. Search in Google Scholar

[24] Shackley, S. M. (2010). X-ray fluorescence spectrometry (XRF) in geoarchaeology. New York, NY, USA: Springer. DOI: 10.1007/978-1-4419-6886-9. 10.1007/978-1-4419-6886-9Search in Google Scholar

[25] Shah, M. L., Pulhani, A. K., Gupta, G. P., & Suri, B. M. (2012). Quantitative elemental analysis of steel using calibration-free laser-induced breakdown spectroscopy. Applied Optics, 51, 4612–4621. DOI: 10.1364/ao.51.004612. http://dx.doi.org/10.1364/AO.51.00461210.1364/AO.51.004612Search in Google Scholar PubMed

[26] Singh, J., & Thakur, S. (2007). Laser-induced breakdown spectroscopy. Amsterdam, The Netherlands: Elsevier. Search in Google Scholar

[27] Speakman, R. J., & Neff, H. (2005). Laser ablation-ICP-MS in archaeological research. Albuquerque, NM, USA: University of New Mexico Press. Search in Google Scholar

[28] Taddeucci, J., Pompilio, M., & Scarlato, P. (2004). Conduit processes during the July-August 2001 explosive activity of Mt. Etna (Italy): inferences from glass chemistry and crystal size distribution of ash particles. Journal of Volcanology and Geothermal Research, 137, 33–54. DOI:10.1016/j.jvolgeores.2004.05.011. http://dx.doi.org/10.1016/j.jvolgeores.2004.05.01110.1016/j.jvolgeores.2004.05.011Search in Google Scholar

[29] Tognoni, E., Cristoforetti, G., Legnaioli, S., & Palleschi, V. (2010). Calibration-free laser-induced breakdown spectroscopy: State of the art. Spectrochimica Acta Part B: Atomic Spectroscopy, 65, 1–14. DOI:10.1016/j.sab.2009.11. 006. http://dx.doi.org/10.1016/j.sab.2009.11.006Search in Google Scholar

[30] Tykot, R. H. (2002). Chemical fingerprinting and source tracing of obsidian: The Central Mediterranean trade in black gold. Accounts of Chemical Research, 35, 618–627. DOI: 10.1021/ar000208p. http://dx.doi.org/10.1021/ar000208p10.1021/ar000208pSearch in Google Scholar

[31] Wijnen, M. H. J. M. N. (1981). The Early Neolithic I settlement at Sesklo: an early farming community in Thessaly, Greece. Leiden, The Netherlands: Leiden University Press. Search in Google Scholar

[32] Williams Thorpe, O., Warren, S. E., & Nandris, J. G. (1984). The distribution and provenance of archaeological obsidian in central and eastern Europe. Journal of Archaeological Science, 11, 183–212. DOI: 10.1016/0305-4403(84)90001-3. http://dx.doi.org/10.1016/0305-4403(84)90001-310.1016/0305-4403(84)90001-3Search in Google Scholar

Published Online: 2013-2-14
Published in Print: 2013-5-1

© 2013 Institute of Chemistry, Slovak Academy of Sciences

Downloaded on 27.11.2025 from https://www.degruyterbrill.com/document/doi/10.2478/s11696-013-0332-x/html
Scroll to top button