Home Synthesis and catalytic performance of MCM-41 modified with tetracarboxylphthalocyanine
Article
Licensed
Unlicensed Requires Authentication

Synthesis and catalytic performance of MCM-41 modified with tetracarboxylphthalocyanine

  • Ya-Ping Zhang EMAIL logo , Ke-Chuang Xue , Wei-Ping Zhang , Chao Song , Rong-Lan Zhang and Jian-She Zhao
Published/Copyright: January 9, 2013
Become an author with De Gruyter Brill

Abstract

A series of tetracarboxylphthalocyanines (MPc(COOH)4, M = H, Mn(II), Fe(II), Co(II), Ni(II), Cu(II), and Zn(II)) were anchored onto MCM-41 by the following procedures: functionalization of MCM-41 with (EtO)3SiCH2CH2CH2NH2 reacting with surface Si-OH, and anchoring MPc(COOH)4 onto MCM-41 with a substitution reaction between chloroformyl and amino groups. The samples were characterized by infrared spectroscopy, powder X-ray diffraction, scanning electron microscopy, N2 adsorption-desorption, and X-ray photoelectron spectroscopy. Catalytic activity of oxidation was tested using solutions of ethanethiol in petroleum ether and thiophene in octane; CoPc-CONH-MCM-41 displayed the highest conversion ratio of 90.15 % and 93.79 %, respectively.

[1] Agnus, Y., Louis, R., Gisselbrecht, J., & Weiss, R. (1984). Dicopper(II) chloro and azido inclusion complexes of the [24-ane-N2S4] binucleating macrocycle. Synthesis, crystal and molecular structures, and spectral, magnetic, and electrochemical properties. Journal of the American Chemical Society, 106, 93–102. DOI: 10.1021/ja00313a020. http://dx.doi.org/10.1021/ja00313a02010.1021/ja00313a020Search in Google Scholar

[2] Altamirano, E., de los Reyes, J. A., Murrieta, F., & Vrinat, M. (2008). Hydrodesulfurization of 4,6-dimethyldibenzothiophene over Co(Ni)MoS2 catalysts supported on alumina: Effect of gallium as an additive. Catalysis Today, 133–135, 292–298. DOI:10.1016/j.cattod.2007.12.085. http://dx.doi.org/10.1016/j.cattod.2007.12.08510.1016/j.cattod.2007.12.085Search in Google Scholar

[3] Araujo, S. A., Ionashiro, M., Fernandes, V. J., & Araujo, A. S. (2001). Thermogravimetric investigations during the synthesis of silica-based MCM-41. Journal of Thermal Analysis and Calorimetry, 64, 801–805. DOI: 10.1023/a:1011564916290. http://dx.doi.org/10.1023/A:101156491629010.1023/A:1011564916290Search in Google Scholar

[4] Basu, B., Satapathy, S., & Bhatnagar, A. K. (1993). Merox and related metal phthalocyanine catalyzed oxidation processes. Catalysis Reviews: Science and Engineering, 35, 571–609. DOI: 10.1080/01614949308013917. http://dx.doi.org/10.1080/0161494930801391710.1080/01614949308013917Search in Google Scholar

[5] Breysse, M., Djega-Mariadassou, G., Pessayre, S., Geantet, C., Vrinat, M., Pérot, G., & Lemaire, M. (2003). Deep desulfurization: reactions, catalysts and technological challenges. Catalysis Today, 84, 129–138. DOI: 10.1016/s0920-5861(03)00266-9. http://dx.doi.org/10.1016/S0920-5861(03)00266-910.1016/S0920-5861(03)00266-9Search in Google Scholar

[6] Çamur, M., Özkaya, A. R., & Bulut, M. (2007). Novel phthalocyanines bearing four 4-phenyloxyacetic acid functionalities. Polyhedron, 26, 2638–2646. DOI:10.1016/j.poly.2007.01.010. http://dx.doi.org/10.1016/j.poly.2007.01.01010.1016/j.poly.2007.01.010Search in Google Scholar

[7] Chatti, I., Ghorbel, A., Grange, P., & Colin, J. M. (2002). Oxidation of mercaptans in light oil sweetening by cobalt(II) phthalocyanine-hydrotalcite catalysts. Catalysis Today, 75, 113–117. DOI: 10.1016/s0920-5861(02)00051-2. http://dx.doi.org/10.1016/S0920-5861(02)00051-210.1016/S0920-5861(02)00051-2Search in Google Scholar

[8] Chauhan, S. M. S., Gulati, A., Sahay, A., & Nizar, P. N. H. (1996). Autoxidation of alkyl mercaptans catalyzed by cobalt(II)phthalocyanine tetrasodium sulfonate in reverse micelles. Journal of Molecular Catalysis A: Chemical, 105, 159–165. DOI: 10.1016/1381-1169(95)00190-5. http://dx.doi.org/10.1016/1381-1169(95)00190-510.1016/1381-1169(95)00190-5Search in Google Scholar

[9] Chauhan, S. M. S., Srinivas, K. A., Srivastava, P. K., & Sahoo, B. (2003). Solvent-free synthesis of phthalocyanines. Journal of Porphyrins and Phthalocyanines, 7, 548–550. DOI: 10.1142/s1088424603000689. http://dx.doi.org/10.1142/S108842460300068910.1142/S1088424603000689Search in Google Scholar

[10] Das, P., Silva, A. R., Carvalho, A. P., Pires, J., & Freire, C. (2009). Organo-functionalized mesoporous supports for Jacobsen-type catalyst: Laponite versus MCM-41. Journal of Materials Science, 44, 2865–2875. DOI: 10.1007/s10853-009-3379-x. http://dx.doi.org/10.1007/s10853-009-3379-x10.1007/s10853-009-3379-xSearch in Google Scholar

[11] de la Torre, G., Torres, T., & Agulló-López, F. (1997). The phthalocyanine approach to second harmonic generation. Advanced Materials, 9, 265–269. DOI:10.1002/adma.19970090 320. http://dx.doi.org/10.1002/adma.19970090320Search in Google Scholar

[12] de la Torre, G., Vázquez, P., Agulló-López, F., & Torres, T. (1998). Phthalocyanines and related compounds: organic targets for nonlinear optical applications. Journal of Materials Chemistry, 8, 1671–1683. DOI: 10.1039/a803533d. http://dx.doi.org/10.1039/a803533d10.1039/a803533dSearch in Google Scholar

[13] Dhara, K., Sarkar, K., Srimani, D., Saha, S. K., Chattopadhyay, P., & Bhaumik, A. (2010). A new functionalized mesoporous matrix supported Pd(II)-Schiff base complex: an efficient catalyst for the Suzuki-Miyaura coupling reaction. Dalton Transactions, 39, 6395–6402. DOI: 10.1039/c003142a. http://dx.doi.org/10.1039/c003142a10.1039/c003142aSearch in Google Scholar PubMed

[14] Dioos, B. M. L., Geurts, W. A., & Jacobs, P. A. (2004). Coordination of CrIII(salen) on functionalized silica for asymmetric ring opening reactions of epoxides. Catalysis Letters, 97, 125–129. DOI: 10.1023/B:CATL.0000038573.81490.03. http://dx.doi.org/10.1023/B:CATL.0000038573.81490.0310.1023/B:CATL.0000038573.81490.03Search in Google Scholar

[15] Duan, A. J., Li, R. L., Jiang, G. Y., Gao, J. S., Zhao, Z., Wan, G. F., Zhang, D. Q., Huang, W. Q., & Chung, K. H. (2009). Hydrodesulphurization performance of NiW/TiO2-Al2O3 catalyst for ultra clean diesel. Catalysis Today, 140, 187–191. DOI:10.1016/j.cattod.2008.10.008. http://dx.doi.org/10.1016/j.cattod.2008.10.00810.1016/j.cattod.2008.10.008Search in Google Scholar

[16] Hu, S. Q., Liu, D. P., Li, L. S., Borgna, A., & Yang, Y. H. (2009). A non-sodium synthesis of highly ordered V-MCM 41 and its catalytic application in isomerization. Catalysis Letters, 129, 478–485. DOI: 10.1007/s10562-008-9826-5. http://dx.doi.org/10.1007/s10562-008-9826-510.1007/s10562-008-9826-5Search in Google Scholar

[17] Iliuta, M. C., & Larachi, F. (2007). Gas-liquid partition coefficients and Henry’s law constants of methyl mercaptan in aqueous solutions of Fe(II)-CDTA chelate complex. Fluid Phase Equilibria, 253, 124–129. DOI:10.1016/j.fluid.2007.02. 008. http://dx.doi.org/10.1016/j.fluid.2007.02.008Search in Google Scholar

[18] Jin, S., Cheng, G. Z., Chen, G. Z., & Ji, Z. P. (2005). Tuning the maximum absorption wavelengths of phthalocyanine derivatives. Journal of Porphyrins and Phthalocyanines, 9, 32–39. DOI: 10.1142/s1088424605000071. http://dx.doi.org/10.1142/S108842460500007110.1142/S1088424605000071Search in Google Scholar

[19] Joseph, J. K., Jain, S. L., & Sain, B. (2010). Covalently anchored polymer immobilized Co(II) phthalocyanine as efficient catalyst for oxidation of mercaptans using molecular oxygen as oxidant. Industrial & Engineering Chemistry Research, 49, 6674–6677. DOI: 10.1021/ie100351s. http://dx.doi.org/10.1021/ie100351s10.1021/ie100351sSearch in Google Scholar

[20] Kastner, J. R., Das, K. C., Buquoi, Q., & Melear, N. D. (2003). Low temperature catalytic oxidation of hydrogen sulfide and methanethiol using wood and coal fly ash. Environmental Science & Technology, 37, 2568–2574. DOI: 10.1021/es0259988. http://dx.doi.org/10.1021/es025998810.1021/es0259988Search in Google Scholar PubMed

[21] Li, H. R., Nguyen, N., Fronczek, F. R., & Vicente, M. G. H. (2009). Syntheses and properties of octa-, tetra-, and dihydroxy-substituted phthalocyanines. Tetrahedron, 65, 3357–3363. DOI:10.1016/j.tet.2009.02.012. http://dx.doi.org/10.1016/j.tet.2009.02.01210.1016/j.tet.2009.02.012Search in Google Scholar

[22] Liu, H. C., & Min, E. Z. (2006). Catalytic oxidation of mercaptans by bifunctional catalysts composed of cobalt phthalocyanine supported on Mg-Al hydrotalcite-derived solid bases: effects of basicity. Green Chemistry, 8, 657–662. DOI: 10.1039/b603461f. http://dx.doi.org/10.1039/b603461f10.1039/B603461FSearch in Google Scholar

[23] Liu, W., Jackson, B. L., Zhu, J., Miao, C. Q., Chung, C. H., Park, Y. J., Sun, K., Woo, J., & Xie, Y. H. (2010). Large scale pattern graphene electrode for high performance in transparent organic single crystal field-effect transistors. Nano, 4, 3927–3932. DOI: 10.1021/nn100728p. 10.1021/nn100728pSearch in Google Scholar

[24] Mack, J., & Stillman, M. J. (2001). Assignment of the optical spectra of metal phthalocyanines through spectral band deconvolution analysis and ZINDO calculations. Coordination Chemistry Reviews, 219–221, 993–1032. DOI: 10.1016/s0010-8545(01)00394-0. http://dx.doi.org/10.1016/S0010-8545(01)00394-010.1016/S0010-8545(01)00394-0Search in Google Scholar

[25] Martin, A. E., & Bulkowski, J. E. (1982). General synthetic route to hexaamine macrocycles. Journal of Organic Chemistry, 47, 415–418. DOI: 10.1021/jo00342a007. http://dx.doi.org/10.1021/jo00342a00710.1021/jo00342a007Search in Google Scholar

[26] Olkhovyk, O., & Jaroniec, M. (2005). Periodic mesoporous organosilica with large heterocyclic bridging groups. Journal of the American Chemical Society, 127, 60–61. DOI: 10.1021/ja043941a. http://dx.doi.org/10.1021/ja043941a10.1021/ja043941aSearch in Google Scholar PubMed

[27] Özer, M., Altındal, A., Özkaya, A. R., Bulut, M., & Bekaroğlu, Ö. (2006). Synthesis, characterization and some properties of novel bis(pentafluorophenyl)methoxy substituted metal free and metallophthalocyanines. Polyhedron, 25, 3593–3602. DOI:10.1016/j.poly.2006.07.011. http://dx.doi.org/10.1016/j.poly.2006.07.01110.1016/j.poly.2006.07.011Search in Google Scholar

[28] Özil, M., Ağar, E., Şaşmaz, S., Kahveci, B., Akdemir, N., & Gümrükşüoğlu, İ. E. (2007). Microwave-assisted synthesis and characterization of the monomeric phthalocyanines containing naphthalene-amide group moieties and the polymeric phthalocyanines containing oxa-aza bridge. Dyes and Pigments, 75, 732–740. DOI:10.1016/j.dyepig.2006.07.026. http://dx.doi.org/10.1016/j.dyepig.2006.07.02610.1016/j.dyepig.2006.07.026Search in Google Scholar

[29] Parida, K. M., & Rath, D. (2009). Amine functionalized MCM-41: An active and reusable catalyst for Knoevenagel condensation reaction. Journal of Molecular Catalysis A: General, 310, 93–100. DOI:10.1016/j.molcata.2009.06.001. http://dx.doi.org/10.1016/j.molcata.2009.06.00110.1016/j.molcata.2009.06.001Search in Google Scholar

[30] Prado, A. G. S., & Airoldi, C. (2002). Different neutral surfactant template extraction routes for synthetic hexagonal mesoporous silicas. Journal of Materials Chemistry, 12, 3823–3826. DOI: 10.1039/b204060c. http://dx.doi.org/10.1039/b204060c10.1039/b204060cSearch in Google Scholar

[31] Sharman, W. M., & van Lier, J. E. (2005). A new procedure for the synthesis of water-soluble tri-cationic and -anionic phthalocyanines. Journal of Porphyrins and Phthalocyanines, 9, 651–658. DOI: 10.1142/s1088424605000769. http://dx.doi.org/10.1142/S108842460500076910.1142/S1088424605000769Search in Google Scholar

[32] Vittar, N. B. R., Awruch, J., Azizuddin, K., & Rivarola, V. (2010). Caspase-independent apoptosis, in human MCF-7c3 breast cancer cells, following photodynamic therapy, with a novel water-soluble phthalocyanine. The International Journal of Biochemistry & Cell Biology, 42, 1123–1131. DOI:10.1016/j.biocel.2010.03.019. http://dx.doi.org/10.1016/j.biocel.2010.03.01910.1016/j.biocel.2010.03.019Search in Google Scholar PubMed

[33] Wang, H., Mauthoor, S., Din, S., Gardener, J. A., Chan, R., Warner, M., Aeppli, G., McComb, D.W., Ryan, M. P., Wu, W., Fisher, A. J., Stoneham, M., & Heutz, S. (2010). Ultralong copper phthalocyanine nanowires with new crystal structure and broad optical absorption. Nano, 4, 3921–3926. DOI: 10.1021/nn100782w. 10.1021/nn100782wSearch in Google Scholar

[34] Xu, J. Q., Chu, W., & Luo, S. Z. (2006). Synthesis and characterization of mesoporous V-MCM-41 molecular sieves with good hydrothermal and thermal stability. Journal of Molecular Catalysis A: Chemical, 256, 48–56. DOI:10.1016/j.molcata.2006.03.078. http://dx.doi.org/10.1016/j.molcata.2006.03.07810.1016/j.molcata.2006.03.078Search in Google Scholar

[35] Yarasir, M. N., Kandaz, M., Senkal, B. F., Koca, A., & Salih, B. (2007). Metal-ion sensing and aggregation studies on reactive phthalocyanines bearing soft-metal receptor moieties; synthesis, spectroscopy and electrochemistry. Polyhedron, 26, 5235–5242. DOI:10.1016/j.poly.2007.07.042. http://dx.doi.org/10.1016/j.poly.2007.07.04210.1016/j.poly.2007.07.042Search in Google Scholar

[36] Ying, J. Y., Mehnert, C. P., & Wong, M. S. (1999). Synthesis and applications of supramolecular-templated mesoporous materials. Angewandte Chemie International Edition, 38, 56–77. DOI:10.1002/(SICI)1521-3773(19990115)38:1/2〈56::AID-ANIE56〉3.0.CO;2-E. http://dx.doi.org/10.1002/(SICI)1521-3773(19990115)38:1/2<56::AID-ANIE56>3.0.CO;2-E10.1002/(SICI)1521-3773(19990115)38:1/2<56::AID-ANIE56>3.0.CO;2-ESearch in Google Scholar

Published Online: 2013-1-9
Published in Print: 2013-4-1

© 2012 Institute of Chemistry, Slovak Academy of Sciences

Articles in the same Issue

  1. Identification of carbohydrate isomers in flavonoid glycosides after hydrolysis by hydrophilic interaction chromatography
  2. Preparation of a new metallomicelle catalyst for the hydrolysis of bis(4-nitrophenyl) phosphate
  3. Synthesis and catalytic performance of MCM-41 modified with tetracarboxylphthalocyanine
  4. Comparison of polymeric and ceramic membranes performance in the process of micellar enhanced ultrafiltration of cadmium(II) ions from aqueous solutions
  5. Pertraction of cadmium and zinc ions using a supported liquid membrane impregnated with different carriers
  6. Effect of lentil and bean flours on rheological and baking properties of wheat dough
  7. Preparation, structural characterisation, and magnetic properties of [Cu(men)2][Cu2Cd2Cl2(CN)6] (men = N-methylethane-1,2-diamine)
  8. Structure and properties of 2-[(E)-2-(4-dipropylaminophenyl)-1-ethenyl]-1,3,3-trimethyl-3H-indolium chloride
  9. Properties of water-soluble carboxymethyl chitosan film modified by hydrophobic poly(propylene glycol)
  10. Characterisation of hydroxyapatite surface modified by poly(ethylene glycol) and poly(hydroxyethyl methacrylate) grafting
  11. Synthesis and keto-enol tautomerism of ethyl 4-oxo-3,4-dihydro-1H-pyrano[3,4-b]quinoline-3-carboxylate
  12. An efficient method for the preparation of benzyl γ-ketohexanoates
  13. Micelle nano-reactors as mediators of water-insoluble ligand complexation with Cu(II) ions in aqueous medium
  14. Reactivity of base catalysed hydrolysis of 2-pyridinylmethylene-8-quinolinyl-Schiff base iron(II) iodide complexes: solvent effects
Downloaded on 27.11.2025 from https://www.degruyterbrill.com/document/doi/10.2478/s11696-012-0288-2/html
Scroll to top button