Abstract
A series of tetracarboxylphthalocyanines (MPc(COOH)4, M = H, Mn(II), Fe(II), Co(II), Ni(II), Cu(II), and Zn(II)) were anchored onto MCM-41 by the following procedures: functionalization of MCM-41 with (EtO)3SiCH2CH2CH2NH2 reacting with surface Si-OH, and anchoring MPc(COOH)4 onto MCM-41 with a substitution reaction between chloroformyl and amino groups. The samples were characterized by infrared spectroscopy, powder X-ray diffraction, scanning electron microscopy, N2 adsorption-desorption, and X-ray photoelectron spectroscopy. Catalytic activity of oxidation was tested using solutions of ethanethiol in petroleum ether and thiophene in octane; CoPc-CONH-MCM-41 displayed the highest conversion ratio of 90.15 % and 93.79 %, respectively.
[1] Agnus, Y., Louis, R., Gisselbrecht, J., & Weiss, R. (1984). Dicopper(II) chloro and azido inclusion complexes of the [24-ane-N2S4] binucleating macrocycle. Synthesis, crystal and molecular structures, and spectral, magnetic, and electrochemical properties. Journal of the American Chemical Society, 106, 93–102. DOI: 10.1021/ja00313a020. http://dx.doi.org/10.1021/ja00313a02010.1021/ja00313a020Search in Google Scholar
[2] Altamirano, E., de los Reyes, J. A., Murrieta, F., & Vrinat, M. (2008). Hydrodesulfurization of 4,6-dimethyldibenzothiophene over Co(Ni)MoS2 catalysts supported on alumina: Effect of gallium as an additive. Catalysis Today, 133–135, 292–298. DOI:10.1016/j.cattod.2007.12.085. http://dx.doi.org/10.1016/j.cattod.2007.12.08510.1016/j.cattod.2007.12.085Search in Google Scholar
[3] Araujo, S. A., Ionashiro, M., Fernandes, V. J., & Araujo, A. S. (2001). Thermogravimetric investigations during the synthesis of silica-based MCM-41. Journal of Thermal Analysis and Calorimetry, 64, 801–805. DOI: 10.1023/a:1011564916290. http://dx.doi.org/10.1023/A:101156491629010.1023/A:1011564916290Search in Google Scholar
[4] Basu, B., Satapathy, S., & Bhatnagar, A. K. (1993). Merox and related metal phthalocyanine catalyzed oxidation processes. Catalysis Reviews: Science and Engineering, 35, 571–609. DOI: 10.1080/01614949308013917. http://dx.doi.org/10.1080/0161494930801391710.1080/01614949308013917Search in Google Scholar
[5] Breysse, M., Djega-Mariadassou, G., Pessayre, S., Geantet, C., Vrinat, M., Pérot, G., & Lemaire, M. (2003). Deep desulfurization: reactions, catalysts and technological challenges. Catalysis Today, 84, 129–138. DOI: 10.1016/s0920-5861(03)00266-9. http://dx.doi.org/10.1016/S0920-5861(03)00266-910.1016/S0920-5861(03)00266-9Search in Google Scholar
[6] Çamur, M., Özkaya, A. R., & Bulut, M. (2007). Novel phthalocyanines bearing four 4-phenyloxyacetic acid functionalities. Polyhedron, 26, 2638–2646. DOI:10.1016/j.poly.2007.01.010. http://dx.doi.org/10.1016/j.poly.2007.01.01010.1016/j.poly.2007.01.010Search in Google Scholar
[7] Chatti, I., Ghorbel, A., Grange, P., & Colin, J. M. (2002). Oxidation of mercaptans in light oil sweetening by cobalt(II) phthalocyanine-hydrotalcite catalysts. Catalysis Today, 75, 113–117. DOI: 10.1016/s0920-5861(02)00051-2. http://dx.doi.org/10.1016/S0920-5861(02)00051-210.1016/S0920-5861(02)00051-2Search in Google Scholar
[8] Chauhan, S. M. S., Gulati, A., Sahay, A., & Nizar, P. N. H. (1996). Autoxidation of alkyl mercaptans catalyzed by cobalt(II)phthalocyanine tetrasodium sulfonate in reverse micelles. Journal of Molecular Catalysis A: Chemical, 105, 159–165. DOI: 10.1016/1381-1169(95)00190-5. http://dx.doi.org/10.1016/1381-1169(95)00190-510.1016/1381-1169(95)00190-5Search in Google Scholar
[9] Chauhan, S. M. S., Srinivas, K. A., Srivastava, P. K., & Sahoo, B. (2003). Solvent-free synthesis of phthalocyanines. Journal of Porphyrins and Phthalocyanines, 7, 548–550. DOI: 10.1142/s1088424603000689. http://dx.doi.org/10.1142/S108842460300068910.1142/S1088424603000689Search in Google Scholar
[10] Das, P., Silva, A. R., Carvalho, A. P., Pires, J., & Freire, C. (2009). Organo-functionalized mesoporous supports for Jacobsen-type catalyst: Laponite versus MCM-41. Journal of Materials Science, 44, 2865–2875. DOI: 10.1007/s10853-009-3379-x. http://dx.doi.org/10.1007/s10853-009-3379-x10.1007/s10853-009-3379-xSearch in Google Scholar
[11] de la Torre, G., Torres, T., & Agulló-López, F. (1997). The phthalocyanine approach to second harmonic generation. Advanced Materials, 9, 265–269. DOI:10.1002/adma.19970090 320. http://dx.doi.org/10.1002/adma.19970090320Search in Google Scholar
[12] de la Torre, G., Vázquez, P., Agulló-López, F., & Torres, T. (1998). Phthalocyanines and related compounds: organic targets for nonlinear optical applications. Journal of Materials Chemistry, 8, 1671–1683. DOI: 10.1039/a803533d. http://dx.doi.org/10.1039/a803533d10.1039/a803533dSearch in Google Scholar
[13] Dhara, K., Sarkar, K., Srimani, D., Saha, S. K., Chattopadhyay, P., & Bhaumik, A. (2010). A new functionalized mesoporous matrix supported Pd(II)-Schiff base complex: an efficient catalyst for the Suzuki-Miyaura coupling reaction. Dalton Transactions, 39, 6395–6402. DOI: 10.1039/c003142a. http://dx.doi.org/10.1039/c003142a10.1039/c003142aSearch in Google Scholar PubMed
[14] Dioos, B. M. L., Geurts, W. A., & Jacobs, P. A. (2004). Coordination of CrIII(salen) on functionalized silica for asymmetric ring opening reactions of epoxides. Catalysis Letters, 97, 125–129. DOI: 10.1023/B:CATL.0000038573.81490.03. http://dx.doi.org/10.1023/B:CATL.0000038573.81490.0310.1023/B:CATL.0000038573.81490.03Search in Google Scholar
[15] Duan, A. J., Li, R. L., Jiang, G. Y., Gao, J. S., Zhao, Z., Wan, G. F., Zhang, D. Q., Huang, W. Q., & Chung, K. H. (2009). Hydrodesulphurization performance of NiW/TiO2-Al2O3 catalyst for ultra clean diesel. Catalysis Today, 140, 187–191. DOI:10.1016/j.cattod.2008.10.008. http://dx.doi.org/10.1016/j.cattod.2008.10.00810.1016/j.cattod.2008.10.008Search in Google Scholar
[16] Hu, S. Q., Liu, D. P., Li, L. S., Borgna, A., & Yang, Y. H. (2009). A non-sodium synthesis of highly ordered V-MCM 41 and its catalytic application in isomerization. Catalysis Letters, 129, 478–485. DOI: 10.1007/s10562-008-9826-5. http://dx.doi.org/10.1007/s10562-008-9826-510.1007/s10562-008-9826-5Search in Google Scholar
[17] Iliuta, M. C., & Larachi, F. (2007). Gas-liquid partition coefficients and Henry’s law constants of methyl mercaptan in aqueous solutions of Fe(II)-CDTA chelate complex. Fluid Phase Equilibria, 253, 124–129. DOI:10.1016/j.fluid.2007.02. 008. http://dx.doi.org/10.1016/j.fluid.2007.02.008Search in Google Scholar
[18] Jin, S., Cheng, G. Z., Chen, G. Z., & Ji, Z. P. (2005). Tuning the maximum absorption wavelengths of phthalocyanine derivatives. Journal of Porphyrins and Phthalocyanines, 9, 32–39. DOI: 10.1142/s1088424605000071. http://dx.doi.org/10.1142/S108842460500007110.1142/S1088424605000071Search in Google Scholar
[19] Joseph, J. K., Jain, S. L., & Sain, B. (2010). Covalently anchored polymer immobilized Co(II) phthalocyanine as efficient catalyst for oxidation of mercaptans using molecular oxygen as oxidant. Industrial & Engineering Chemistry Research, 49, 6674–6677. DOI: 10.1021/ie100351s. http://dx.doi.org/10.1021/ie100351s10.1021/ie100351sSearch in Google Scholar
[20] Kastner, J. R., Das, K. C., Buquoi, Q., & Melear, N. D. (2003). Low temperature catalytic oxidation of hydrogen sulfide and methanethiol using wood and coal fly ash. Environmental Science & Technology, 37, 2568–2574. DOI: 10.1021/es0259988. http://dx.doi.org/10.1021/es025998810.1021/es0259988Search in Google Scholar PubMed
[21] Li, H. R., Nguyen, N., Fronczek, F. R., & Vicente, M. G. H. (2009). Syntheses and properties of octa-, tetra-, and dihydroxy-substituted phthalocyanines. Tetrahedron, 65, 3357–3363. DOI:10.1016/j.tet.2009.02.012. http://dx.doi.org/10.1016/j.tet.2009.02.01210.1016/j.tet.2009.02.012Search in Google Scholar
[22] Liu, H. C., & Min, E. Z. (2006). Catalytic oxidation of mercaptans by bifunctional catalysts composed of cobalt phthalocyanine supported on Mg-Al hydrotalcite-derived solid bases: effects of basicity. Green Chemistry, 8, 657–662. DOI: 10.1039/b603461f. http://dx.doi.org/10.1039/b603461f10.1039/B603461FSearch in Google Scholar
[23] Liu, W., Jackson, B. L., Zhu, J., Miao, C. Q., Chung, C. H., Park, Y. J., Sun, K., Woo, J., & Xie, Y. H. (2010). Large scale pattern graphene electrode for high performance in transparent organic single crystal field-effect transistors. Nano, 4, 3927–3932. DOI: 10.1021/nn100728p. 10.1021/nn100728pSearch in Google Scholar
[24] Mack, J., & Stillman, M. J. (2001). Assignment of the optical spectra of metal phthalocyanines through spectral band deconvolution analysis and ZINDO calculations. Coordination Chemistry Reviews, 219–221, 993–1032. DOI: 10.1016/s0010-8545(01)00394-0. http://dx.doi.org/10.1016/S0010-8545(01)00394-010.1016/S0010-8545(01)00394-0Search in Google Scholar
[25] Martin, A. E., & Bulkowski, J. E. (1982). General synthetic route to hexaamine macrocycles. Journal of Organic Chemistry, 47, 415–418. DOI: 10.1021/jo00342a007. http://dx.doi.org/10.1021/jo00342a00710.1021/jo00342a007Search in Google Scholar
[26] Olkhovyk, O., & Jaroniec, M. (2005). Periodic mesoporous organosilica with large heterocyclic bridging groups. Journal of the American Chemical Society, 127, 60–61. DOI: 10.1021/ja043941a. http://dx.doi.org/10.1021/ja043941a10.1021/ja043941aSearch in Google Scholar PubMed
[27] Özer, M., Altındal, A., Özkaya, A. R., Bulut, M., & Bekaroğlu, Ö. (2006). Synthesis, characterization and some properties of novel bis(pentafluorophenyl)methoxy substituted metal free and metallophthalocyanines. Polyhedron, 25, 3593–3602. DOI:10.1016/j.poly.2006.07.011. http://dx.doi.org/10.1016/j.poly.2006.07.01110.1016/j.poly.2006.07.011Search in Google Scholar
[28] Özil, M., Ağar, E., Şaşmaz, S., Kahveci, B., Akdemir, N., & Gümrükşüoğlu, İ. E. (2007). Microwave-assisted synthesis and characterization of the monomeric phthalocyanines containing naphthalene-amide group moieties and the polymeric phthalocyanines containing oxa-aza bridge. Dyes and Pigments, 75, 732–740. DOI:10.1016/j.dyepig.2006.07.026. http://dx.doi.org/10.1016/j.dyepig.2006.07.02610.1016/j.dyepig.2006.07.026Search in Google Scholar
[29] Parida, K. M., & Rath, D. (2009). Amine functionalized MCM-41: An active and reusable catalyst for Knoevenagel condensation reaction. Journal of Molecular Catalysis A: General, 310, 93–100. DOI:10.1016/j.molcata.2009.06.001. http://dx.doi.org/10.1016/j.molcata.2009.06.00110.1016/j.molcata.2009.06.001Search in Google Scholar
[30] Prado, A. G. S., & Airoldi, C. (2002). Different neutral surfactant template extraction routes for synthetic hexagonal mesoporous silicas. Journal of Materials Chemistry, 12, 3823–3826. DOI: 10.1039/b204060c. http://dx.doi.org/10.1039/b204060c10.1039/b204060cSearch in Google Scholar
[31] Sharman, W. M., & van Lier, J. E. (2005). A new procedure for the synthesis of water-soluble tri-cationic and -anionic phthalocyanines. Journal of Porphyrins and Phthalocyanines, 9, 651–658. DOI: 10.1142/s1088424605000769. http://dx.doi.org/10.1142/S108842460500076910.1142/S1088424605000769Search in Google Scholar
[32] Vittar, N. B. R., Awruch, J., Azizuddin, K., & Rivarola, V. (2010). Caspase-independent apoptosis, in human MCF-7c3 breast cancer cells, following photodynamic therapy, with a novel water-soluble phthalocyanine. The International Journal of Biochemistry & Cell Biology, 42, 1123–1131. DOI:10.1016/j.biocel.2010.03.019. http://dx.doi.org/10.1016/j.biocel.2010.03.01910.1016/j.biocel.2010.03.019Search in Google Scholar PubMed
[33] Wang, H., Mauthoor, S., Din, S., Gardener, J. A., Chan, R., Warner, M., Aeppli, G., McComb, D.W., Ryan, M. P., Wu, W., Fisher, A. J., Stoneham, M., & Heutz, S. (2010). Ultralong copper phthalocyanine nanowires with new crystal structure and broad optical absorption. Nano, 4, 3921–3926. DOI: 10.1021/nn100782w. 10.1021/nn100782wSearch in Google Scholar
[34] Xu, J. Q., Chu, W., & Luo, S. Z. (2006). Synthesis and characterization of mesoporous V-MCM-41 molecular sieves with good hydrothermal and thermal stability. Journal of Molecular Catalysis A: Chemical, 256, 48–56. DOI:10.1016/j.molcata.2006.03.078. http://dx.doi.org/10.1016/j.molcata.2006.03.07810.1016/j.molcata.2006.03.078Search in Google Scholar
[35] Yarasir, M. N., Kandaz, M., Senkal, B. F., Koca, A., & Salih, B. (2007). Metal-ion sensing and aggregation studies on reactive phthalocyanines bearing soft-metal receptor moieties; synthesis, spectroscopy and electrochemistry. Polyhedron, 26, 5235–5242. DOI:10.1016/j.poly.2007.07.042. http://dx.doi.org/10.1016/j.poly.2007.07.04210.1016/j.poly.2007.07.042Search in Google Scholar
[36] Ying, J. Y., Mehnert, C. P., & Wong, M. S. (1999). Synthesis and applications of supramolecular-templated mesoporous materials. Angewandte Chemie International Edition, 38, 56–77. DOI:10.1002/(SICI)1521-3773(19990115)38:1/2〈56::AID-ANIE56〉3.0.CO;2-E. http://dx.doi.org/10.1002/(SICI)1521-3773(19990115)38:1/2<56::AID-ANIE56>3.0.CO;2-E10.1002/(SICI)1521-3773(19990115)38:1/2<56::AID-ANIE56>3.0.CO;2-ESearch in Google Scholar
© 2012 Institute of Chemistry, Slovak Academy of Sciences
Articles in the same Issue
- Identification of carbohydrate isomers in flavonoid glycosides after hydrolysis by hydrophilic interaction chromatography
- Preparation of a new metallomicelle catalyst for the hydrolysis of bis(4-nitrophenyl) phosphate
- Synthesis and catalytic performance of MCM-41 modified with tetracarboxylphthalocyanine
- Comparison of polymeric and ceramic membranes performance in the process of micellar enhanced ultrafiltration of cadmium(II) ions from aqueous solutions
- Pertraction of cadmium and zinc ions using a supported liquid membrane impregnated with different carriers
- Effect of lentil and bean flours on rheological and baking properties of wheat dough
- Preparation, structural characterisation, and magnetic properties of [Cu(men)2][Cu2Cd2Cl2(CN)6] (men = N-methylethane-1,2-diamine)
- Structure and properties of 2-[(E)-2-(4-dipropylaminophenyl)-1-ethenyl]-1,3,3-trimethyl-3H-indolium chloride
- Properties of water-soluble carboxymethyl chitosan film modified by hydrophobic poly(propylene glycol)
- Characterisation of hydroxyapatite surface modified by poly(ethylene glycol) and poly(hydroxyethyl methacrylate) grafting
- Synthesis and keto-enol tautomerism of ethyl 4-oxo-3,4-dihydro-1H-pyrano[3,4-b]quinoline-3-carboxylate
- An efficient method for the preparation of benzyl γ-ketohexanoates
- Micelle nano-reactors as mediators of water-insoluble ligand complexation with Cu(II) ions in aqueous medium
- Reactivity of base catalysed hydrolysis of 2-pyridinylmethylene-8-quinolinyl-Schiff base iron(II) iodide complexes: solvent effects
Articles in the same Issue
- Identification of carbohydrate isomers in flavonoid glycosides after hydrolysis by hydrophilic interaction chromatography
- Preparation of a new metallomicelle catalyst for the hydrolysis of bis(4-nitrophenyl) phosphate
- Synthesis and catalytic performance of MCM-41 modified with tetracarboxylphthalocyanine
- Comparison of polymeric and ceramic membranes performance in the process of micellar enhanced ultrafiltration of cadmium(II) ions from aqueous solutions
- Pertraction of cadmium and zinc ions using a supported liquid membrane impregnated with different carriers
- Effect of lentil and bean flours on rheological and baking properties of wheat dough
- Preparation, structural characterisation, and magnetic properties of [Cu(men)2][Cu2Cd2Cl2(CN)6] (men = N-methylethane-1,2-diamine)
- Structure and properties of 2-[(E)-2-(4-dipropylaminophenyl)-1-ethenyl]-1,3,3-trimethyl-3H-indolium chloride
- Properties of water-soluble carboxymethyl chitosan film modified by hydrophobic poly(propylene glycol)
- Characterisation of hydroxyapatite surface modified by poly(ethylene glycol) and poly(hydroxyethyl methacrylate) grafting
- Synthesis and keto-enol tautomerism of ethyl 4-oxo-3,4-dihydro-1H-pyrano[3,4-b]quinoline-3-carboxylate
- An efficient method for the preparation of benzyl γ-ketohexanoates
- Micelle nano-reactors as mediators of water-insoluble ligand complexation with Cu(II) ions in aqueous medium
- Reactivity of base catalysed hydrolysis of 2-pyridinylmethylene-8-quinolinyl-Schiff base iron(II) iodide complexes: solvent effects