Abstract
The thermal decomposition of lanthanide complexes, with a general formula: [LnL(NO3)2](NO3), where Ln = La, Pr, Nd, Sm, Gd, Tb, Dy, and Er; and L = bis-(salicyladehyde)-1,3-propylenediimine Schiff base ligand, was studied by thermogravimetric (TG) and derivative thermogravimetric (DTG) techniques. The TG and DTG data indicated that all complexes are thermostable up to 398 K. The thermal decomposition of all Ln(III) complexes was a two-stage process and the final residues were Ln2O3 (Ln = La, Nd, Sm, Gd, Dy, Er), Tb4O7, and Pr6 O11. The activation energies of thermal decomposition of the complexes were calculated from analysis of the TG-DTG curves using the Kissinger, Friedman, and Flynn-Well-Ozawa methods.
[1] Badea, M., Olar, R., Cristurean, E., Marinescu, D., Brezeanu, M., Balasoiu, M., & Segal, E. (1999). Thermal stability of some polynuclear coordination compounds in the systems Ln(III)—Co(II)—oxalate. Journal of Thermal Analysis and Calorimetry, 58, 103–111. DOI: 10.1023/a:1010131617489. http://dx.doi.org/10.1023/A:101013161748910.1023/A:1010131617489Search in Google Scholar
[2] Emara, A. A. A., Saleh, A. A., & Adly, O. M. I. (2007). Spectroscopic investigations of new binuclear transition metal complexes of Schiff bases derived from 4,6-diacetylresorcinol and 3-amino-1-propanol or 1,3-diaminopropane. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 68, 592–604. DOI: 10.1016/j.saa.2006.12.034. http://dx.doi.org/10.1016/j.saa.2006.12.03410.1016/j.saa.2006.12.034Search in Google Scholar
[3] Ferenc, W., & Bocian, B. (2000). Thermal stability of 2,3,4-, 2,4,5- and 3,4,5-rimethoxybenzoates of light lanthanide. Journal of Thermal Analysis and Calorimetry, 60, 131–138. DOI: 10.1023/a:1010188905767. http://dx.doi.org/10.1023/A:101018890576710.1023/A:1010188905767Search in Google Scholar
[4] Friedman, H. L. (1964). Kinetics of thermal degradation of charforming plastics from thermogravimetry. Application to a phenolic plastic. Journal of Polymer Science Part C: Polymer Symposia, 6, 183–195. DOI: 10.1002/polc.5070060121. http://dx.doi.org/10.1002/polc.507006012110.1002/polc.5070060121Search in Google Scholar
[5] Hussein, G. A. M., Buttrey, D. J., DeSanto, P., Abd-Elgaber, A. A., Roshdy, H., & Myhoub, A. Y. Z. (2003). Formation and characterization of samarium oxide generated from different precursors. Thermochimica Acta, 402, 27–36. DOI: 10.1016/s0040-6031(02)00535-x. http://dx.doi.org/10.1016/S0040-6031(02)00535-X10.1016/S0040-6031(02)00535-XSearch in Google Scholar
[6] Kumar, A. S., & Indrasenan, P. (2008). Thermal decomposition studies of lanthanide(III) complexes of EDTA. Asian Journal of Chemistry, 20, 5178–5186. Search in Google Scholar
[7] Kissinger, H. E. (1957). Reaction kinetics in differential thermal analysis. Analytical Chemistry, 29, 1702–1706. DOI: 10.1021/ac60131a045. http://dx.doi.org/10.1021/ac60131a04510.1021/ac60131a045Search in Google Scholar
[8] Li, Q., Li, T., & Wu, J. (2001). Luminescence of europium(III) and terbium(III) complexes incorporated in poly(vinyl pyrrolidone) matrix. The Journal of Physical Chemistry B, 105, 12293–12296. DOI: 10.1021/jp012922+. http://dx.doi.org/10.1021/jp012922+10.1021/jp012922+Search in Google Scholar
[9] Marques, R. N., Melios, C. B., & Ionashiro, M. (2002). Synthesis, characterisation and thermal behaviour of solid state compounds of 4-methylbenzylidenepyruvate with heavier trivalent lanthanides and yttrium(III). Thermochimica Acta, 395, 145–150. DOI: 10.1016/s0040-6031(02)00143-0. http://dx.doi.org/10.1016/S0040-6031(02)00143-010.1016/S0040-6031(02)00143-0Search in Google Scholar
[10] Mary, N. L., & Parameswaran, G. (1991). Kinetics and mechanism of the thermal decomposition of Schiff base complexes of lanthanides by TG and DSC studies. Thermochimica Acta, 185, 345–353. DOI: 10.1016/0040-6031(91)80055-n. http://dx.doi.org/10.1016/0040-6031(91)80055-N10.1016/0040-6031(91)80055-NSearch in Google Scholar
[11] Ozawa, T. (1965). A new method of analyzing thermogravimetric data. Bulletin of the Chemical Society of Japan, 38, 1881–1886. DOI: 10.1246/bcsj.38.1881. http://dx.doi.org/10.1246/bcsj.38.188110.1246/bcsj.38.1881Search in Google Scholar
[12] Petoud, S., Cohen, S. M., Bünzli, J. C. G., & Raymond, K. N. (2003). Stable lanthanide luminescence agents highly emissive in aqueous solution: Multidentate 2-hydroxyisophthalamide complexes of Sm3+, Eu3+, Tb3+, Dy3+. Journal of the American Chemical Society, 125, 13324–13325. DOI: 10.1021/ja0379363. http://dx.doi.org/10.1021/ja037936310.1021/ja0379363Search in Google Scholar
[13] Taha, Z. A., Ajlouni, A. M., Al-Hassan, K. A., Hijazi, A. K., & Faiq, A. B. (2011). Syntheses, characterization, biological activity and fluorescence properties of bis-(salicylaldehyde)-1,3-propylenediimine Schiff base ligand and its lanthanide complexes. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 81, 317–323. DOI: 10.1016/j.saa.2011.06.018. http://dx.doi.org/10.1016/j.saa.2011.06.01810.1016/j.saa.2011.06.018Search in Google Scholar
[14] Vicente, M., Bastida, R., Lodeiro, C., Macías, A., Parola, A. J., Valencia, L., & Spey, S. E. (2003). Metal complexes with a new N4O3 amine pendant-armed macrocyclic ligand: Synthesis, characterization, crystal structures, and fluorescence studies. Inorganic Chemistry, 42, 6768–6779. DOI: 10.1021/ic034245z. http://dx.doi.org/10.1021/ic034245z10.1021/ic034245zSearch in Google Scholar
[15] Woods, M., Kovacs, Z., & Sherry, A. D. (2002). Targeted complexes of lanthanide(III) ions as therapeutic and diagnostic pharmaceuticals. Journal of Supramolecular Chemistry, 2, 1–15. DOI: 10.1016/s1472-7862(02)00072-2. http://dx.doi.org/10.1016/S1472-7862(02)00072-210.1016/S1472-7862(02)00072-2Search in Google Scholar
[16] Yin, C. M., Liu, Z. R., Kong, Y. H., Wu, C. Y., Ren, D. H., Lü, Y. G., & Xue, H. F. (1992). Studies on the thermal behaviour and decomposition mechanism of complexes of rare earth(III) nitrates with 18-crown-6. Thermochimica Acta, 204, 251–260. DOI: 10.1016/0040-6031(92)85229-o. http://dx.doi.org/10.1016/0040-6031(92)85229-O10.1016/0040-6031(92)85229-OSearch in Google Scholar
[17] Zheng, Y., Fu, L., Zhou, Y., Yu, J., Yu, Y., Wang, S., & Zhang, H. (2002). Electroluminescence based on a β-diketonate ternary samarium complex. Journal of Materials Chemistry, 12, 919–923. DOI: 10.1039/b110373c. http://dx.doi.org/10.1039/b110373c10.1039/b110373cSearch in Google Scholar
© 2012 Institute of Chemistry, Slovak Academy of Sciences
Articles in the same Issue
- Characterisation of VOC composition of Slovak monofloral honeys by GC×GC-TOF-MS
- Combustion-derived CdO nanopowder as a heterogeneous basic catalyst for efficient synthesis of sulfonamides from aromatic amines using p-toluenesulfonyl chloride
- Molybdate sulfonic acid: preparation, characterization, and application as an effective and reusable catalyst for octahydroxanthene-1,8-dione synthesis
- Enantioselective extraction of hydrophilic 2-chloromandelic acid enantiomers by hydroxypropyl-β-cyclodextrin: experiments and modeling
- Attrition of dolomitic lime in a fluidized-bed reactor at high temperatures
- Improvement of aquatic pollutant partition coefficient correlations using 1D molecular descriptors — chlorobenzene case study
- Mercury characterisation in urban particulate matter
- Thermal decomposition of lanthanide(III) complexes of bis-(salicylaldehyde)-1,3-propylenediimine Schiff base ligand
- Effect of hyamine on electrochemical behaviour of brass alloy in HNO3 solution
- Calorimetric determination of the effect of additives on cement hydration process
- Entrapment of ethyl vanillin in calcium alginate and calcium alginate/poly(vinyl alcohol) beads
- Facile synthesis of 3-substituted quinazoline-2,4-dione and 2,3-di-substituted quinazolinone derivatives
- Virtual screening of imidazole analogs as potential hepatitis C virus NS5B polymerase inhibitors
- A new phenanthroindolizidine alkaloid from Tylophora indica
Articles in the same Issue
- Characterisation of VOC composition of Slovak monofloral honeys by GC×GC-TOF-MS
- Combustion-derived CdO nanopowder as a heterogeneous basic catalyst for efficient synthesis of sulfonamides from aromatic amines using p-toluenesulfonyl chloride
- Molybdate sulfonic acid: preparation, characterization, and application as an effective and reusable catalyst for octahydroxanthene-1,8-dione synthesis
- Enantioselective extraction of hydrophilic 2-chloromandelic acid enantiomers by hydroxypropyl-β-cyclodextrin: experiments and modeling
- Attrition of dolomitic lime in a fluidized-bed reactor at high temperatures
- Improvement of aquatic pollutant partition coefficient correlations using 1D molecular descriptors — chlorobenzene case study
- Mercury characterisation in urban particulate matter
- Thermal decomposition of lanthanide(III) complexes of bis-(salicylaldehyde)-1,3-propylenediimine Schiff base ligand
- Effect of hyamine on electrochemical behaviour of brass alloy in HNO3 solution
- Calorimetric determination of the effect of additives on cement hydration process
- Entrapment of ethyl vanillin in calcium alginate and calcium alginate/poly(vinyl alcohol) beads
- Facile synthesis of 3-substituted quinazoline-2,4-dione and 2,3-di-substituted quinazolinone derivatives
- Virtual screening of imidazole analogs as potential hepatitis C virus NS5B polymerase inhibitors
- A new phenanthroindolizidine alkaloid from Tylophora indica