Home Trace elements in Variegated Bolete (Suillus variegatus) fungi
Article
Licensed
Unlicensed Requires Authentication

Trace elements in Variegated Bolete (Suillus variegatus) fungi

  • Joanna Szubstarska EMAIL logo , Grażyna Jarzyńska and Jerzy Falandysz
Published/Copyright: July 27, 2012
Become an author with De Gruyter Brill

Abstract

Metallic elements such as Ag, Al, Ba, Ca, Cd, Co, Cr, Cu, Fe, K, Mg, Mn, Na, Ni, Pb, Rb, Sr, and Zn were determined using ICP-OES in a representative set of fifteen fruiting bodies of the edible fungus Suillus variegatus. Fruiting bodies were collected from unpolluted areas near the village of Lubichowo of the Bory Tucholskie forest complex in northern Poland in 2007–2008. The caps were richer in Ag, Al, Cd, Cr, Cu, Fe, K,Mg, Ni, Rb, and Zn, and the stipes in Ba, Ca, Mn, Na, Pb, and Sr. Cobalt concentration in the caps and stipes was similar. In the caps, the content of the elements decreased in the order (mg per kg of dry weight): K 29000 ± 3700, Fe 1600 ± 80, Mg 990 ± 110, Rb 320 ± 86, Zn 90 ± 19, Ca 75 ± 34, Al 68 ± 32, Na 40 ± 18, Cu 19 ± 7, Mn 13 ± 7, Cd 1.0 ± 0.5, Ni 0.64 ± 0.32, Ag 0.40 ± 0.20, Cr 0.33 ± 0.06, Pb 0.20 ± 0.17, Ba 0.19 ± 0.11, Sr 0.15 ± 0.09, and Co 0.070 ± 0.050. Apparently, S. variegatus collected from background areas are relatively low in Pb and Cd and so are suitable for human consumption.

[1] Borovička, J., & Řanda, Z. (2007). Distribution of iron, cobalt, zinc and selenium in macrofungi. Mycological Progress, 6, 249–259. DOI: 10.1007/s11557-007-0544-y. http://dx.doi.org/10.1007/s11557-007-0544-y10.1007/s11557-007-0544-ySearch in Google Scholar

[2] Brzostowski, A., Falandysz, J., Jarzyńska, G., & Zhang, D. (2011). Bioconcentration potential of metallic elements by Poison Pax (Paxillus involutus) mushroom. Journal of Environmental Science and Health, Part A, 46, 378–393. DOI: 10.1080/10934529.2011.542387. 10.1080/10934529.2011.542387Search in Google Scholar PubMed

[3] Chudzyński, K., & Falandysz, J. (2008). Multivariate analysis of elements content of Larch Bolete (Suillus grevillei) mushroom. Chemosphere, 73, 1230–1239. DOI: 10.1016/j.chemosphere.2008.07.055. http://dx.doi.org/10.1016/j.chemosphere.2008.07.05510.1016/j.chemosphere.2008.07.055Search in Google Scholar PubMed

[4] Chudzyński, K., Bielawski, L., & Falandysz, J. (2009). Mercury bio-concentration potential of Larch Bolete, Suillus grevillei, mushroom. Bulletin of Environment Contamination and Toxicology, 83, 275–279. DOI: 10.1007/s00128-009-9723-7. http://dx.doi.org/10.1007/s00128-009-9723-710.1007/s00128-009-9723-7Search in Google Scholar PubMed

[5] Chudzyński, K., Jarzyńska, G., Stefańska, A., & Falandysz, J. (2011). Mercury content and bio-concentration potential of Slippery Jack, Suillus luteus, mushroom. Food Chemistry, 125, 986–990. DOI: 10.1016/j.foodchem.2010.09.102. http://dx.doi.org/10.1016/j.foodchem.2010.09.10210.1016/j.foodchem.2010.09.102Search in Google Scholar

[6] EU Commission (2006). Commission Regulation (EC) No. 1881/2006 of 19 December 2006 setting maximum levels for certain contaminants in foodstuffs. Official Journal of the European Union, L364, 5–24. Search in Google Scholar

[7] EU Commission (2008). Commission Regulation (EC) No. 629/2008 of 2 July 2008 amending Regulation (EC) No. 1881/2006 setting maximum levels for certain contaminants in foodstuffs. Official Journal of the European Union, L173, 6–9. Search in Google Scholar

[8] Falandysz, J. (2008). Selenium in edible mushrooms. Journal of Environmental Science and Health, Part C, 26, 256–299. DOI: 10.1080/10590500802350086. 10.1080/10590500802350086Search in Google Scholar PubMed

[9] Falandysz, J., Bona, H., & Danisiewicz, D. (1994a). Silver content of wild-grown mushrooms from northern Poland. Zeitschrift für Lebensmitteluntersuchung und -Forschung A, 199, 222–224. DOI: 10.1007/bf01193449. http://dx.doi.org/10.1007/BF0119344910.1007/BF01193449Search in Google Scholar PubMed

[10] Falandysz, J., Bona, H., & Danisiewicz, D. (1994b). Silver uptake by Agaricus bisporus from an artificially enriched substrate. Zeitschrift für Lebensmitteluntersuchung und -Forschung A, 199, 225–228. DOI: 10.1007/bf01193450. http://dx.doi.org/10.1007/BF0119345010.1007/BF01193450Search in Google Scholar PubMed

[11] Falandysz, J., Gucia, M., Frankowska, A., Kawano, M., & Skwarzec, B. (2001a). Total mercury in wild mushrooms and underlying soil substrate from the city of Umeå and its surroundings, Sweden. Bulletin of Environmental Contamination and Toxicology, 67, 763–770. DOI: 10.1007/s001280188. 10.1007/s001280188Search in Google Scholar PubMed

[12] Falandysz, J., Szymczyk, K., Ichihashi, H., Bielawski, L., Gucia, M., Frankowska, A., & Yamasaki, S.-i. (2001b). ICP/MS and ICP/AES elemental analysis (38 elements) of edible wild mushrooms growing in Poland. Food Additives and Contaminants, 18, 503–513. DOI: 10.1080/02652030119625. 10.1080/02652030119625Search in Google Scholar PubMed

[13] Falandysz, J., Bielawski, L., Kannan, K., Gucia, M., Lipka, K., & Brzostowski, A. (2002). Mercury in wild mushrooms and underlying soil substrate from the great lakes land in Poland. Journal of Environmental Monitoring, 4, 473–476. DOI: 10.1039/b202946d. http://dx.doi.org/10.1039/b202946d10.1039/b202946dSearch in Google Scholar

[14] Falandysz, J., Kawano, K., Świeczkowski, A., Brzostowski, A., & Dadej, M. (2003). Total mercury in wild-grown higher mushrooms and underlying soil from Wdzydze Landscape Park, Northern Poland. Food Chemistry, 81, 21–26. DOI: 10.1016/s0308-8146(02)00344-8. http://dx.doi.org/10.1016/S0308-8146(02)00344-810.1016/S0308-8146(02)00344-8Search in Google Scholar

[15] Falandysz, J., Frankowska, A., & Mazur, A. (2007). Mercury and its bioconcentration factors in King Bolete (Boletus edulis). Bull. Fr. Journal of Environmental Science and Health, Part A, 42, 2089–2095. DOI: 10.1080/10934520701627058. 10.1080/10934520701627058Search in Google Scholar PubMed

[16] Falandysz, J., Kunito, T., Kubota, R., Bielawski, L., Frankowska, A., Falandysz, J. J., & Tanabe, S. (2008). Multivariate characterization of elements accumulated in King Bolete Boletus edulis mushroom at lowland and high mountain regions. Journal of Environmental Science and Health, Part A, 43, 1692–1699. DOI: 10.1080/10934520802330206. 10.1080/10934520802330206Search in Google Scholar PubMed

[17] Falandysz, J., Frankowska, A., Jarzyńska, G., Dryżałowska, A., Kojta, A. K., & Zhang, D. (2011). Survey on composition and bioconcentration potential of 12 metallic elements in King Bolete (Boletus edulis) mushroom that emerged at 11 spatially distant sites. Journal of Environmental Science and Health, Part B, 46, 231–246 DOI: 10.1080/03601234.2011.540528. http://dx.doi.org/10.1080/03601234.2011.54052810.1080/03601234.2011.540528Search in Google Scholar PubMed

[18] Falandysz, J., Drewnowska, M., Gucia, M., Jarzyńska, G., Kojta, A. K., & Sajwan, K. S. (2012). Multivariate analysis of mineral constituents of edible Field Parasol (Macrolepiota procera) mushroom and soils beneath to fruiting bodies collected from central and southern regions of Poland. Bioconcentration potential, intake and toxicological risk. African Journal of Biotechnology, 11, submitted. Search in Google Scholar

[19] Gucia, M., Jarzyńska, G., Rafał, E., Roszak, M., Kojta, A. K., Osiej, I., & Falandysz, J. (2012). Multivariate analysis of mineral constituents of edible Parasol Mushroom (Macrolepiota procera) and soils beneath fruiting bodies collected from Northern Poland. Environmental Science and Pollution Research Internationl, 19, 416–431. DOI: 10.1007/s11356-011-0574-5. http://dx.doi.org/10.1007/s11356-011-0574-510.1007/s11356-011-0574-5Search in Google Scholar PubMed PubMed Central

[20] Gumińska, B., & Wojewoda, W. (1985). Grzyby i ich oznaczanie. Warszawa, Poland: Państwowe Wydawnictwo Rolnicze i Leśne. Search in Google Scholar

[21] Jarzyńska, G., & Falandysz, J. (2011). The determination of mercury in mushrooms by CV-AAS and ICP-AES techniques. Journal of Environmental Science and Health, Part A, 46, 569–573. DOI: 10.1080/10934529.2011.562816. 10.1080/10934529.2011.562816Search in Google Scholar PubMed

[22] Kroupa, M., Kalač, P., & Drbal, K. (1980). The variability of the contents of trace elements in some edible mushrooms. Česká Mykologie, 34, 110–114. (in Czech) Search in Google Scholar

[23] Li, T., Wang, Y. Z, Hang, J., Zhao, Y. L., & Liu, H. G. (2011). Trace element content of Boletus tomentipes mushroom collected from Yunnan, China. Food Chemistry, 127, 1828–1830. DOI: 10.1016/j.foodchem.2011.02.012. http://dx.doi.org/10.1016/j.foodchem.2011.02.01210.1016/j.foodchem.2011.02.012Search in Google Scholar

[24] Nnorom, I. C. (2011). Lead and copper in the sclerotium of the mushroom Pleurotus tuberregium (Osu): assessment of contribution to dietary intake in southeastern Nigeria. Toxicological and Environmental Chemistry, 93, 1359–1367. DOI: 10.1080/02772248.2011.588603. http://dx.doi.org/10.1080/02772248.2011.58860310.1080/02772248.2011.588603Search in Google Scholar

[25] Pelkonen, R., Alfthan, G., & Järvinen, O. (2006). Cadmium, lead, arsenic and nickel in wild edible mushrooms. In The Finnish environment (Vol. 17). Helsinki, Finland: Finnish Environment Institute. Search in Google Scholar

[26] Pelkonen, R., Alfthan, G., & Järvinen, O. (2008). Element concentrations in wild edible mushrooms in Finland. In The Finnish environment (Vol. 25). Helsinki, Finland: Finnish Environment Institute. Search in Google Scholar

[27] Valiulis, D., Stankevičiené, D., & Kvietkus, K. (1995). Metal accumulation in some fungi species growing in Lithuania. Atmospheric Physics, 17, 47–51. Search in Google Scholar

[28] Zhang, D., Frankowska, A., Jarzyńska, G., Kojta, A. K., Drewnowska, M., Wydmańska, D., Bielawski, L., Wang, J. P., & Falandysz, J. (2010). Metals of King Bolete (Boletus edulis) Bull.: Fr. collected at the same site over two years. African Journal of Agricultural Research, 5, 3050–3055 Search in Google Scholar

Published Online: 2012-7-27
Published in Print: 2012-11-1

© 2012 Institute of Chemistry, Slovak Academy of Sciences

Articles in the same Issue

  1. Immobilization in biotechnology and biorecognition: from macro- to nanoscale systems
  2. Bond-graph description and simulation of membrane processes: Permeation in a compartmental membrane system
  3. Design simulations for a biogas purification process using aqueous amine solutions
  4. Experimental and numerical investigation of pressure drop coefficient and static pressure difference in a tangential inlet cyclone separator
  5. Trace elements in Variegated Bolete (Suillus variegatus) fungi
  6. N,N′-methylenedipyridinium Pt(II) and Pt(IV) hybrid salts: synthesis, crystal and molecular structures of [(C5H5N)2CH2] · [PtCl4] and [(C5H5N)2CH2] · [PtCl6]
  7. Formation of membranes based on polyacrylonitrile and butadiene-acrylonitrile elastomer in the presence of copper ions
  8. One-step synthesis of solid sulfonic acid catalyst and its application in the acetalization of glycerol: crystal structure of cis-5-hydroxy-2-phenyl-1,3-dioxane trimer
  9. Mechanistic insights into the reaction of CF3CCl3 with SO3: Theory and experiment
  10. Near-infrared imaging for quantitative analysis of active component in counterfeit dimethomorph using partial least squares regression
  11. Corrosion of titanium diboride in molten FLiNaK(eut)
  12. Domino synthesis of novel series of 4-substituted 5-thioxo-1,2,4-triazolidin-3-one derivatives
  13. Erratum to: “Nguyen Hoang Loc, Nguyen Thanh Giang: Effects of elicitors on the enhancement of asiaticoside biosynthesis in cell cultures of centella (Centella asiatica L. Urban)”, Chemical Papers 66 (7) 642–648 (2012)
Downloaded on 27.11.2025 from https://www.degruyterbrill.com/document/doi/10.2478/s11696-012-0216-5/html
Scroll to top button