Abstract
Several DNA amplification-based methods were used for identification and evaluation of the relation between lactobacilli isolated from breastfed full-term infant faeces (31 strains), dairy products (5 strains) and silage (1 strain). Twenty-seven strains isolated from infant faeces were identified as Lactobacillus rhamnosus (9), Lactobacillus gasseri (6), Lactobacillus paracasei (4), Lactobacillus fermentum (4), Lactobacillus salivarius (2), Lactobacillus plantarum (1), and Lactobacillus helveticus (1) using 10 species-specific polymerase chain reactions (PCRs), multiplex PCR for the Lactobacillus casei group, and sequencing of 16S rDNA. Four strains were not identified. Six strains isolated from dairy products and silage were identified as Lactobacillus rhamnosus. A repetitive extragenic palindromic polymerase chain reaction (rep-PCR) with primer (GTG)5 and a randomly amplified polymorphic DNA polymerase chain reaction (RAPD-PCR) with primer M13 were used for confirmation of species identification. Fingerprints were used for evaluation of the relatedness of lactobacilli. Differences between strains from infant faeces, dairy products, and silage were not detected.
[1] Ben Amor, K., Vaughan, E. E., & de Vos, W. M. (2007). Advanced molecular tools for the identification of lactic acid bacteria. The Journal of Nutrition, 137, 741S–747S. Search in Google Scholar
[2] Bernardeau, M., Guguen, M., & Vernoux, J. P. (2006). Beneficial lactobacilli food and feed: long-term use, biodiversity and proposals for specific and realistic safety assessments. FEMS Microbiology Reviews, 30, 487–513. DOI: 10.1111/j.1574-6976.2006.00020.x. http://dx.doi.org/10.1111/j.1574-6976.2006.00020.x10.1111/j.1574-6976.2006.00020.xSearch in Google Scholar
[3] Byun, R., Nadkarni, M. A., Chhour, K. L., Martin, F. E., Jacques, N. A., & Hunter, N. (2004). Quantitative analysis of diverse Lactobacillus species present in advanced dental caries. Journal of Clinical Microbiology, 42, 3128–3136. DOI: 10.1128/jcm.42.7.3128-3136.2004. http://dx.doi.org/10.1128/JCM.42.7.3128-3136.200410.1128/JCM.42.7.3128-3136.2004Search in Google Scholar
[4] Dellaglio, F., Dicks, L. M. T., Du Toit, M., & Torriani, S. (1991). Designation of ATCC 334 in place of ATCC 393 (NCDO 161) as the neotype strain of Lactobacillus casei subsp. casei and rejection of the name Lactobacillus paracasei (Collins et al., 1989). International Journal of Systematic and Evolutionary Microbiology, 41, 340–342. DOI: 10.1099/00207713-41-2-340. 10.1099/00207713-41-2-340Search in Google Scholar
[5] Dellaglio, F., Felia, G. E., & Torriani, S. (2002). The status of the species Lactobacillus casei (Orla-Jensen 1916) Hansen and Lessel 1971 and Lactobacillus paracasei Collins et al. 1989. International Journal of Systematic and Evolutionary Microbiology, 52, 285–287. 10.1099/00207713-52-1-285Search in Google Scholar
[6] Desai, A. R., Shah, N. P., & Powell, I. B. (2006). Discrimination of dairy industry isolates of the Lactobacillus casei group. Journal of Dairy Science, 89, 3345–3351. DOI: 10.3168/jds.S0022-0302(06)72371-2. http://dx.doi.org/10.3168/jds.S0022-0302(06)72371-210.3168/jds.S0022-0302(06)72371-2Search in Google Scholar
[7] Dicks, L. M. T., Du Plessis, E. M., Dellaglio, F., & Lauer, E. (1996). Reclassification of Lactobacillus casei subsp. casei ATCC 393 and Lactobacillus rhamnosus ATCC 15820 as Lactobacillus zeae nom. rev., designation of ATCC 334 as the neotype of L. casei subsp. casei, and rejection of the name Lactobacillus paracasei. International Journal of Systematic and Evolutionary Microbiology, 46, 337–340. DOI: 10.1099/00207713-46-1-337. 10.1099/00207713-46-1-337Search in Google Scholar PubMed
[8] Dubernet, S., Desmasures, N., & Guéguen, M. (2002). A PCR-based method for identification of lactobacilli at the genus level. FEMS Microbiological Letters, 214, 271–275. DOI: 10.1016/s0378-1097(02)00895-9. http://dx.doi.org/10.1111/j.1574-6968.2002.tb11358.x10.1111/j.1574-6968.2002.tb11358.xSearch in Google Scholar PubMed
[9] Ehrmann, M. A., & Vogel, R. F. (2005). Molecular taxonomy and genetics of sourdough lactic acid bacteria. Trends in Food Science & Technology, 16, 31–42. DOI: 10.1016/j.tifs.2004.06.004. http://dx.doi.org/10.1016/j.tifs.2004.06.00410.1016/j.tifs.2004.06.004Search in Google Scholar
[10] Ferchichi, M., Valcheva, R., Prévost, H., Onno, B., & Dousset, X. (2008). A one-step reaction for the rapid identification of Lactobacillus mindensis, Lactobacillus panis, Lactobacillus paralimentarius, Lactobacillus pontis and Lactobacillus frumenti using oligonucleotide primers designed from the 16S-23S rRNA intergenic sequences. Journal of Applied Microbiology, 104, 1797–1807. DOI: 10.1111/j.1365- 2672.2007.03712.x. http://dx.doi.org/10.1111/j.1365-2672.2007.03712.x10.1111/j.1365-2672.2007.03712.xSearch in Google Scholar PubMed
[11] Gevers, D., Huys, G., & Swings, J. (2001). Applicability of rep-PCR fingerprinting for identification of Lactobacillus species. FEMS Microbiology Letters, 205, 31–36. DOI: 10.1016/s0378-1097(01)00439-6. http://dx.doi.org/10.1111/j.1574-6968.2001.tb10921.x10.1111/j.1574-6968.2001.tb10921.xSearch in Google Scholar PubMed
[12] Klein, G. (2007). International committee on systematics of prokaryotes; Subcommittee on the taxonomy of Bifidobacterium, Lactobacillus and related organisms. International Journal of Systematic and Evolutionary Microbiology, 57, 1367–1369. DOI: 10.1099/ijs.0.65143-0. http://dx.doi.org/10.1099/ijs.0.65143-010.1099/ijs.0.65143-0Search in Google Scholar
[13] Li, Y., & Nishino, N. (2011). Bacterial and fungal communities of wilted Italian ryegrass silage inoculated with and without Lactobacillus rhamnosus or Lactobacillus buchneri. Letters in Applied Microbiology, 52, 314–321. DOI: 10.1111/j.1472-765x.2010.03000.x. http://dx.doi.org/10.1111/j.1472-765X.2010.03000.x10.1111/j.1472-765X.2010.03000.xSearch in Google Scholar PubMed
[14] Mitsou, E. K., Kirtzalidou, E., Oikonomou, I., Liosis, G., & Kyriacou, A. (2008). Fecal microflora of Greek healthy neonates. Anaerobe, 14, 94–101. DOI: 10.1016/j.anaerobe.2007.11.002. http://dx.doi.org/10.1016/j.anaerobe.2007.11.00210.1016/j.anaerobe.2007.11.002Search in Google Scholar PubMed
[15] Rossetti, L., & Giraffa, G. (2005). Rapid identification of dairy lactic acid bacteria by M13-generated, RAPD-PCR fingerprint databases. Journal of Microbiological Methods, 63, 135–144. DOI: 10.1016/j.mimet.2005.03.001. http://dx.doi.org/10.1016/j.mimet.2005.03.00110.1016/j.mimet.2005.03.001Search in Google Scholar PubMed
[16] Sambrook, J., & Russel, D. W. (2001). Molecular cloning: A laboratory manual (II) (3rd ed.). New York, NY, USA: Cold Spring Laboratory Harbor Press. Search in Google Scholar
[17] Sisto, A., De Bellis, P., Visconti, A., Morelli, L., & Lavermicocca, P. (2009). Development of a PCR assay for the strain-specific identification of probiotic strain Lactobacillus paracasei IMPC2.1. International Journal of Food Microbiology, 136, 59–65. DOI: 10.1016/j.ijfoodmicro.2009.09.017. http://dx.doi.org/10.1016/j.ijfoodmicro.2009.09.01710.1016/j.ijfoodmicro.2009.09.017Search in Google Scholar PubMed
[18] Štšepetova, J., Sepp, E., Kolk, H., Löivukene, K., Songisepp, E., & Mikelsaar, M. (2011). Diversity and metabolic impact of intestinal Lactobacillus species in healthy adults and the elderly. British Journal of Nutrition, 105, 1235–1244. DOI: 10.1017/s0007114510004770. http://dx.doi.org/10.1017/S000711451000477010.1017/S0007114510004770Search in Google Scholar PubMed
[19] Švec, P., Kukletová, M., & Sedláček, I. (2010). Comparative evaluation of automated ribotyping and RAPD-PCR for typing of Lactobacillus spp. occurring in dental carries. Antonie van Leeuwenhoek, 98, 85–92. DOI: 10.1007/s10482-010-9432- 6. http://dx.doi.org/10.1007/s10482-010-9432-6Search in Google Scholar
[20] Verdenelli, M. C., Ghelfi, F., Silvi, S., Orpianes, C., Cecchini, C., & Cresci, A. (2009). Probiotic properties of Lactobacillus rhamnosus and Lactobacillus paracasei isolated from human faeces. European Journal of Nutrition, 48, 355–363. DOI: 10.1007/s00394-009-0021-2. http://dx.doi.org/10.1007/s00394-009-0021-210.1007/s00394-009-0021-2Search in Google Scholar PubMed
[21] Wall, R., Fitzgerald, G., Hussey, S., Ryan, T., Murphy, B., Ross, P., & Stanton, C. (2007). Genomic diversity of cultivable Lactobacillus populations residing in the neonatal adult gastrointestinal tract. FEMS Microbiology Ecology, 59, 127–137. DOI: 10.1111/j.1574-6941.2006.00202.x. http://dx.doi.org/10.1111/j.1574-6941.2006.00202.x10.1111/j.1574-6941.2006.00202.xSearch in Google Scholar PubMed
[22] Walter, J., Tannock, G. W., Tilsala-Timisjarvi, A., Rodtong, S., Loach, D. M., Munro, K., & Alatossava, T. (2000). Detection and identification of gastrointestinal Lactobacillus species by using denaturing gradient gel electrophoresis and speciesspecific PCR primers. Applied and Environmental Microbiology, 66, 297–303. DOI: 10.1128/aem.66.1.297-303.2000. http://dx.doi.org/10.1128/AEM.66.1.297-303.200010.1128/AEM.66.1.297-303.2000Search in Google Scholar PubMed PubMed Central
[23] Ward, L. J. H., & Timmins, M. J. (1999). Differentiation of Lactobacillus casei, Lactobacillus paracasei and Lactobacillus rhamnosus by polymerase chain reaction. Letters in Applied Microbiology, 29, 90–92. DOI: 10.1046/j.1365-2672.1999.00586.x. http://dx.doi.org/10.1046/j.1365-2672.1999.00586.x10.1046/j.1365-2672.1999.00586.xSearch in Google Scholar PubMed
© 2012 Institute of Chemistry, Slovak Academy of Sciences
Articles in the same Issue
- 5th Meeting on Chemistry & Life 2011
- Induction of Cryptococcus laurentii α-galactosidase
- Incorporation of β-(1,6)-linked glucooligosaccharides (pustulooligosaccharides) into plant cell wall structures
- Metal-metabolomics of microalga Chlorella sorokiniana growing in selenium- and iodine-enriched media
- Metabolomic approach to Alzheimer’s disease diagnosis based on mass spectrometry
- Seasonal changes of Rubisco content and activity in Fagus sylvatica and Picea abies affected by elevated CO2 concentration
- Identification and determination of relatedness of lactobacilli using different DNA amplification methods
- Production of Geotrichum candidum polygalacturonases via solid state fermentation on grape pomace
- Monitoring of yeast population isolated during spontaneous fermentation of Moravian wine
- Biodegradable polyhydroxybutyrate as a polyol for elastomeric polyurethanes
- Conformational changes in humic acids in aqueous solutions
- Preparation and properties of cementitious composites for geothermal applications
Articles in the same Issue
- 5th Meeting on Chemistry & Life 2011
- Induction of Cryptococcus laurentii α-galactosidase
- Incorporation of β-(1,6)-linked glucooligosaccharides (pustulooligosaccharides) into plant cell wall structures
- Metal-metabolomics of microalga Chlorella sorokiniana growing in selenium- and iodine-enriched media
- Metabolomic approach to Alzheimer’s disease diagnosis based on mass spectrometry
- Seasonal changes of Rubisco content and activity in Fagus sylvatica and Picea abies affected by elevated CO2 concentration
- Identification and determination of relatedness of lactobacilli using different DNA amplification methods
- Production of Geotrichum candidum polygalacturonases via solid state fermentation on grape pomace
- Monitoring of yeast population isolated during spontaneous fermentation of Moravian wine
- Biodegradable polyhydroxybutyrate as a polyol for elastomeric polyurethanes
- Conformational changes in humic acids in aqueous solutions
- Preparation and properties of cementitious composites for geothermal applications