Abstract
We studied Rubisco (ribulose-1,5-bisphosphate carboxylase/oxygenase) content and activity in juvenile tree species — broadleaved Fagus sylvatica L. and coniferous Picea abies (L.) Karsten exposed for three growing seasons to ambient (A = 385 μmol mol−1) and elevated (E = 700 μmol mol−1) CO2 concentrations. Rubisco content was determined by the SDS-PAGE method, Rubisco activity was assayed spectrophotometrically. The highest content of Rubisco enzyme in F. sylvatica was measured immediately after full leaf development followed by a gradual decrease throughout the growing season. By contrast, Rubisco content in P. abies increased markedly during the growing season. In both tree species, down-regulation of Rubisco content in trees cultivated under elevated CO2 concentration was observed. Rubisco activity was stimulated in F. sylvatica by E treatment but not in P. abies. Because no significant differences were found in Rubisco activation state between A and E, we assume that stimulation of Rubisco activity in E is not a consequence of higher carbamylation but could be caused by the release of inhibitors from active sites of Rubisco under elevated CO2.
[1] Ainsworth, E. A., & Rogers, A. (2007). The response of photosynthesis and stomatal conductance to rising [CO2]: mechanisms and environmental interactions. Plant, Cell and Environment, 30, 258–270. DOI: 10.1111/j.1365-3040.2007.01641.x. http://dx.doi.org/10.1111/j.1365-3040.2007.01641.x10.1111/j.1365-3040.2007.01641.xSuche in Google Scholar
[2] Besford, R. T., Mousseau, M., & Matteucci, G. (1998). Biochemistry, physiology and biophysics of photosynthesis. In P. G. Jarvis (Ed.), European forests and global change: The likely impacts of rising CO 2and temperature (Chapter 2, pp. 29–78). Cambridge, UK: Cambridge University Press. Suche in Google Scholar
[3] Cotrufo, M. F., Ineson, P., & Scott, A. (1998). Elevated CO2 reduces the nitrogen concentration of plant tissues. Global Change Biology, 4, 43–54. DOI: 10.1046/j.1365-2486.1998.00101.x. http://dx.doi.org/10.1046/j.1365-2486.1998.00101.x10.1046/j.1365-2486.1998.00101.xSuche in Google Scholar
[4] Curtis, P. S., Vogel, C. S., Wang, X., Pregitzer, K. S., Zak, D. R., Lussenhop, J., Kubiske, M., & Teeri, J. A. (2000). Gas exchange, leaf nitrogen, and growth efficiency of Populus tremuloides in a CO2-enriched atmosphere. Ecological Applications, 10, 3–17. DOI: 10.2307/2640982. 10.2307/2640982Suche in Google Scholar
[5] Griffin, K. L., & Seemann, J. R. (1996). Plants, CO2 and photosynthesis in the 21st century. Chemistry & Biology, 3, 245–254. DOI: 10.1016/s1074-5521(96)90104-0. http://dx.doi.org/10.1016/S1074-5521(96)90104-010.1016/S1074-5521(96)90104-0Suche in Google Scholar
[6] Griffin, K. L., Tissue, D. T., Turnbull, M. H., & Whitehead, D. (2000). The onset of photosynthetic acclimation to elevated CO2 partial pressure in field-grown Pinus radiata D. Don. after 4 years. Plant, Cell and Environment, 23, 1089–1098. DOI: 10.1046/j.1365-3040.2000.00622.x. http://dx.doi.org/10.1046/j.1365-3040.2000.00622.x10.1046/j.1365-3040.2000.00622.xSuche in Google Scholar
[7] Hrstka, M., Urban, O., & Marek, M. V. (2005) Long-term effect of elevated CO2 on spatial differentiation of ribulose-1,5-bisphosphate carboxylase/oxygenase activity in Norway spruce canopy. Photosynthetica, 43, 211–216. DOI:10.1007/s11099-005-0035-9. http://dx.doi.org/10.1007/s11099-005-0035-910.1007/s11099-005-0035-9Suche in Google Scholar
[8] Hrstka, M., Zachová, L., Urban, O., & Košvancová, M. (2008). Seasonal changes of Rubisco activity and its content in Norway spruce exposed to ambient and elevated CO2 concentrations. Chemicke Listy, 102, s657–s659. Suche in Google Scholar
[9] IPCC (2007). Summary for policymakers. In B. Metz, O. R. Davidson, P. R. Bosch, R. Dave, & L. A. Meyer (Eds.), Climate change 2007: Mitigation. Contribution of Working group III to the Fourth assessment report of the Intergovernmental panel on climate change. Cambridge, UK: Cambridge University Press. Suche in Google Scholar
[10] Kalina, J., & Slovák, V. (2004). The inexpensive tool for the determination of projected leaf area. Ekologia (Bratislava), 23, 163–167. Suche in Google Scholar
[11] Košvancová, M., Urban, O., Šprtová, M., Hrstka, M., Kalina, J., Tomášková, I., Špunda, V., & Marek, M. V. (2009). Photosynthetic induction in broadleaved Fagus sylvatica and coniferous Picea abies cultivated under ambient and elevated CO2 concentrations. Plant Science, 177, 123–130. DOI: 10.1016/j.plantsci.2009.04.005. http://dx.doi.org/10.1016/j.plantsci.2009.04.00510.1016/j.plantsci.2009.04.005Suche in Google Scholar
[12] Krapp, A., Hoffman, B., Schäfer, C., & Stitt, M. (1993). Regulation of the expression of rbcS and other photosynthetic genes by carbohydrates: a mechanism for the ’sink’ regulation of photosynthesis? The Plant Journal, 3, 817–828. DOI:10.1111/j.1365-313x.1993.00817.x. http://dx.doi.org/10.1111/j.1365-313X.1993.00817.x10.1111/j.1365-313X.1993.00817.xSuche in Google Scholar
[13] Lilley, R. McC., & Walker, D. A. (1974). An improved spectrophotometric assay for ribulosebisphosphate carboxylase. Biochimica et Biophysica Acta (BBA) — Enzymology, 358, 226–229. DOI: 10.1016/0005-2744(74)90274-5. http://dx.doi.org/10.1016/0005-2744(74)90274-510.1016/0005-2744(74)90274-5Suche in Google Scholar
[14] Lorimer, G. H, Badger, M. R., & Andrews, T. J. (1976). The activation of ribulose-1,5-bisphosphate carboxylase by carbon dioxide and magnesium ions. Equilibria, kinetics, a suggested mechanism, and physiological implications. Biochemistry, 15, 529–536. DOI: 10.1021/bi00648a012. http://dx.doi.org/10.1021/bi00648a01210.1021/bi00648a012Suche in Google Scholar PubMed
[15] Makino, A., Harada, M., Sato, T., Nakano, H., & Mae, T. (1997). Growth and N allocation in rice plants under CO2 enrichment. Plant Physiology, 115, 199–203. DOI: 10.1104/pp.115.1.199. 10.1104/pp.115.1.199Suche in Google Scholar PubMed PubMed Central
[16] Moore, B. D., Cheng, S. H., Sims, D., & Seemann, J. R. (1999). The biochemical and molecular basis for photosynthetic acclimation to elevated atmospheric CO2. Plant, Cell and Environment, 22, 567–582. DOI: 10.1046/j.1365-3040.1999.00432.x. http://dx.doi.org/10.1046/j.1365-3040.1999.00432.x10.1046/j.1365-3040.1999.00432.xSuche in Google Scholar
[17] Myers, D. A., Thomas, R. B., & DeLucia, E. H. (1999). Photosynthetic capacity of loblolly pine (Pinus taeda L.) trees during the first year of carbon dioxide enrichment in a forest ecosystem. Plant, Cell and Environment, 22, 473–481. DOI: 10.1046/j.1365-3040.1999.00434.x. http://dx.doi.org/10.1046/j.1365-3040.1999.00434.x10.1046/j.1365-3040.1999.00434.xSuche in Google Scholar
[18] Nakano, H., Makino, A., & Mae, T. (1997). The effect of elevated partial pressures of CO2 on the relationship between photosynthetic capacity and N content in rice leaves. Plant Physiology, 115, 191–198. DOI: 10.1104/pp.115.1.191. 10.1104/pp.115.1.191Suche in Google Scholar PubMed PubMed Central
[19] Norby, R. J., & Zak, D. R. (2011). Ecological lessons from freeair CO2 enrichment (FACE) experiments. Annual Review of Ecology, Evolution, and Systematics, 42, 181–203. DOI:10.1146/annurev-ecolsys-102209-144647. http://dx.doi.org/10.1146/annurev-ecolsys-102209-14464710.1146/annurev-ecolsys-102209-144647Suche in Google Scholar
[20] Nowak, R. S., Ellsworth, D. S., & Smith, S. D. (2004). Functional responses of plants to elevated atmospheric CO2 — do photosynthetic and productivity data from FACE experiments support early predictions? New Phytologist, 162, 253–280. DOI: 10.1111/j.1469-8137.2004.01033.x. http://dx.doi.org/10.1111/j.1469-8137.2004.01033.x10.1111/j.1469-8137.2004.01033.xSuche in Google Scholar
[21] Parry, M. A. J., Keys, A. J., Madgwick, P. J., Carmo-Silva, A. E., & Andralojc, P. J. (2008). Rubisco regulation: a role for inhibitors. Journal of Experimental Botany, 59, 1569–1580. DOI: 10.1093/jxb/ern084. http://dx.doi.org/10.1093/jxb/ern08410.1093/jxb/ern084Suche in Google Scholar PubMed
[22] Pérez, P., Morcuende, R., del Molino, I. M., & Martínez-Carrasco, R. (2005). Diurnal changes of Rubisco in response to elevated CO2, temperature and nitrogen in wheat grown under temperature gradient tunnels. Enviromental and Experimental Botany, 53, 13–27 DOI:10.1016/j.envexpbot.2004.02.008. http://dx.doi.org/10.1016/j.envexpbot.2004.02.00810.1016/j.envexpbot.2004.02.008Suche in Google Scholar
[23] Portis, A. R., Jr., Li, C., Wang, D., & Salvucci, M. E. (2008). Regulation of Rubisco activase and its interaction with Rubisco. Journal of Experimental Botany, 59, 1597–1604. DOI: 10.1093/jxb/erm240. http://dx.doi.org/10.1093/jxb/erm24010.1093/jxb/erm240Suche in Google Scholar PubMed
[24] Riikonen, J., Holopainen, T., Oksanen, E., & Vapaavuori, E. (2005). Leaf photosynthetic characteristics of silver birch during three years of exposure to elevated concentrations of CO2 and O3 in the field. Tree Physiology, 25, 621–632. DOI: 10.1093/treephys/25.5.621. http://dx.doi.org/10.1093/treephys/25.5.62110.1093/treephys/25.5.621Suche in Google Scholar PubMed
[25] Rogers, A., & Ellsworth, D. S. (2002). Photosynthetic acclimation of Pinus taeda (loblolly pine) to long-term growth in elevated pCO2 (FACE). Plant, Cell and Environment, 25, 851–858. DOI: 10.1046/j.1365-3040.2002.00868.x. http://dx.doi.org/10.1046/j.1365-3040.2002.00868.x10.1046/j.1365-3040.2002.00868.xSuche in Google Scholar
[26] Sage, R. F., Pearcy, R. W., & Seemann, J. R. (1987). The nitrogen use efficiency of C3 and C4 plants. III. Leaf nitrogen effects on the activity of carboxylating enzymes in Chenopodium album (L.) and Amaranthus retroflexus (L.). Plant Physiology, 85, 355–359. DOI: 10.1104/pp.85.2.355. http://dx.doi.org/10.1104/pp.85.2.35510.1104/pp.85.2.355Suche in Google Scholar PubMed PubMed Central
[27] Sicher, R. C., & Bunce, J. A. (1997). Relationship of photosynthetic acclimation to changes of Rubisco activity in fieldgrown winter wheat and barley during growth in elevated carbon dioxide. Photosynthesis Research, 52, 27–38. DOI: 10.1023/a:1005874932233. http://dx.doi.org/10.1023/A:100587493223310.1023/A:1005874932233Suche in Google Scholar
[28] Sokolov, A. P., Stone, P. H., Forest, C. E., Prinn, R., Sarofim, M. C., Webster, M., Paltsev, S., Schlosser, C. A., Kicklighter, D., Dutkiewicz, S., Reilly, J., Wang, C., Felzer, B., Melillo, J. M., & Jacoby, H. D. (2009). Probabilistic forecast for twenty-first-century climate based on uncertainties in emissions (without policy) and climate parameters. Journal of Climate, 22, 5175–5204. DOI:10.1175/2009jcli2863.1. http://dx.doi.org/10.1175/2009JCLI2863.110.1175/2009JCLI2863.1Suche in Google Scholar
[29] Stitt, M. (1991). Rising CO2 levels and their potential significance for carbon flow in photosynthetic cells. Plant, Cell and Environment, 14, 741–762. DOI: 10.1111/j.1365-3040.1991.tb01440.x. http://dx.doi.org/10.1111/j.1365-3040.1991.tb01440.x10.1111/j.1365-3040.1991.tb01440.xSuche in Google Scholar
[30] Tissue, D. T., Griffin, K. L., & Ball, J. T. (1999). Photosynthetic adjustment in field-grown ponderosa pine trees after six years of exposure to elevated CO2. Tree Physiology, 19, 221–228. http://dx.doi.org/10.1093/treephys/19.4-5.22110.1093/treephys/19.4-5.221Suche in Google Scholar PubMed
[31] Tissue, D. T., Thomas, R. B., & Strain, B. R. (1993). Long-term effects of elevated CO2 and nutrients on photosynthesis and rubisco in loblolly pine seedlings. Plant, Cell and Environment, 16, 859–865. DOI: 10.1111/j.1365-3040.1993.tb00508.x. http://dx.doi.org/10.1111/j.1365-3040.1993.tb00508.x10.1111/j.1365-3040.1993.tb00508.xSuche in Google Scholar
[32] Turnbull, M. H., Tissue, D. T., Griffin, K. L., Rogers, G. N. D., & Whitehead, D. (1998). Photosynthetic acclimation to long-term exposure to elevated CO2 concentration in Pinus radiata D. Don. is related to age of needles. Plant, Cell and Environment, 21, 1019–1028. DOI: 10.1046/j.1365-3040.1998.00374.x. http://dx.doi.org/10.1046/j.1365-3040.1998.00374.x10.1046/j.1365-3040.1998.00374.xSuche in Google Scholar
[33] Urban, O., Janouš, D., Pokorný, R., Marková, I., Pavelka, M., Fojtík, Z., Šprtová, M., Kalina, J., & Marek, M. V. (2001). Glass domes with adjustable windows: A novel technique for exposing juvenile forest stands to elevated CO2 concentration. Photosynthetica, 39, 395–401 DOI: 10.1023/a:1015134427592. http://dx.doi.org/10.1023/A:101513442759210.1023/A:1015134427592Suche in Google Scholar
[34] Van Oosten, J. J., Wilkins, D., & Besford, R. T. (1994). Regulation of the expression of photosynthetic nuclear genes by CO2 is mimicked by regulation by carbohydrates: a mechanism for the acclimation of photosynthesis to high CO2? Plant, Cell and Environment, 17, 913–923. DOI: 10.1111/j.1365-3040.1994.tb00320.x. http://dx.doi.org/10.1111/j.1365-3040.1994.tb00320.x10.1111/j.1365-3040.1994.tb00320.xSuche in Google Scholar
© 2012 Institute of Chemistry, Slovak Academy of Sciences
Artikel in diesem Heft
- 5th Meeting on Chemistry & Life 2011
- Induction of Cryptococcus laurentii α-galactosidase
- Incorporation of β-(1,6)-linked glucooligosaccharides (pustulooligosaccharides) into plant cell wall structures
- Metal-metabolomics of microalga Chlorella sorokiniana growing in selenium- and iodine-enriched media
- Metabolomic approach to Alzheimer’s disease diagnosis based on mass spectrometry
- Seasonal changes of Rubisco content and activity in Fagus sylvatica and Picea abies affected by elevated CO2 concentration
- Identification and determination of relatedness of lactobacilli using different DNA amplification methods
- Production of Geotrichum candidum polygalacturonases via solid state fermentation on grape pomace
- Monitoring of yeast population isolated during spontaneous fermentation of Moravian wine
- Biodegradable polyhydroxybutyrate as a polyol for elastomeric polyurethanes
- Conformational changes in humic acids in aqueous solutions
- Preparation and properties of cementitious composites for geothermal applications
Artikel in diesem Heft
- 5th Meeting on Chemistry & Life 2011
- Induction of Cryptococcus laurentii α-galactosidase
- Incorporation of β-(1,6)-linked glucooligosaccharides (pustulooligosaccharides) into plant cell wall structures
- Metal-metabolomics of microalga Chlorella sorokiniana growing in selenium- and iodine-enriched media
- Metabolomic approach to Alzheimer’s disease diagnosis based on mass spectrometry
- Seasonal changes of Rubisco content and activity in Fagus sylvatica and Picea abies affected by elevated CO2 concentration
- Identification and determination of relatedness of lactobacilli using different DNA amplification methods
- Production of Geotrichum candidum polygalacturonases via solid state fermentation on grape pomace
- Monitoring of yeast population isolated during spontaneous fermentation of Moravian wine
- Biodegradable polyhydroxybutyrate as a polyol for elastomeric polyurethanes
- Conformational changes in humic acids in aqueous solutions
- Preparation and properties of cementitious composites for geothermal applications