Home Conformational changes in humic acids in aqueous solutions
Article
Licensed
Unlicensed Requires Authentication

Conformational changes in humic acids in aqueous solutions

  • Martina Klučáková EMAIL logo , Andrea Kargerová and Kristýna Nováčková
Published/Copyright: June 22, 2012
Become an author with De Gruyter Brill

Abstract

Conformational changes in humic acids in two different aqueous solutions (NaCl and NaOH) are studied by means of high resolution ultrasound spectrometry. The method is based on the measurement of parameters of ultrasonic waves propagating through the sample. The attenuation describes the decay of the amplitude of the ultrasonic wave with the distance travelled. The velocity is the speed of this wave and is related to the wavelength and the frequency of oscillation of the deformation. It is determined by the density and elasticity of the sample, which is strongly influenced by the molecular arrangement. The minimal velocity of ultrasound was observed at 1 g dm−3 for lignitic humic acids and at 0.5 g dm−3 for IHSS Leonardite standard. The values of compressibility as computed are almost constant up to humic acids’ content corresponding to the minimum velocity of ultrasound and then decrease with the increase in concentration. This shows that the organisation of particles in diluted and concentrated humic acids sols is different. The decrease in compressibility points to the formation of a more rigid structure, which could lead to the decrease in humic acids’ binding ability. It was confirmed that the method employed was very sensitive and could be utilised as an indicator of conformational changes in humic acids in solutions with varying concentrations.

[1] Alba, F., Crawley, G. M., Fatkin, J., Higgs, D. M. J., & Kippax, P. G. (1999). Acoustic spectroscopy as a technique for the particle sizing of high concentration colloids, emulsions and suspensions. Colloids and Surfaces, A: Physicochemical and Engineering Aspects, 153, 495–502. DOI: 10.1016/s0927-7757(98)00473-7. http://dx.doi.org/10.1016/S0927-7757(98)00473-710.1016/S0927-7757(98)00473-7Search in Google Scholar

[2] Barančíková, G., Klučáková, M., Madaras, M., Makovníková, J.,& Pekař, M. (2003). Chemical structure of humic acids isolated from various soil types and lignite. Humic Substances in the Environment, 3, 3–8. Search in Google Scholar

[3] Buckin, V. A., Kankia, B. I., Rentzeperis, D., & Marky, L. A. (1994). Mg2+ recognizes the sequence of DNA through its hydration shell. Journal of the American Chemical Society, 116, 9423–9429. DOI: 10.1021/ja00100a003. http://dx.doi.org/10.1021/ja00100a00310.1021/ja00100a003Search in Google Scholar

[4] Buckin, V. A., O’Driscoll, B., & Smyth, C. (2003). Ultrasonic spectroscopy for material analysis. Recent advances. Spectroscopy Europe, 15(1), 20–25. Search in Google Scholar

[5] Christl, I., Metzger, A., Heidmann, I., & Kretzschmar, R. (2005). Effect of humic and fulvic acid concentrations and ionic strength on copper and lead binding. Environmental Science & Technology, 39, 5319–5326. DOI:10.1021/es050018f. http://dx.doi.org/10.1021/es050018f10.1021/es050018fSearch in Google Scholar

[6] Conte, P., & Piccolo, A. (1999). Conformational arrangement of dissolved humic substances. Influence of solution composition on association of humic molecules. Environmental Science & Technology, 33, 1682–1690. DOI: 10.1021/es9808604. 10.1021/es9808604Search in Google Scholar

[7] Fitch, A., Stevenson, F. J., & Chen, Y. (1986). Complexation of Cu(II) with a soil humic acid: Response characteristics of Cu(II) ion-selective electrode and ligand concentration effects. Organic Geochemistry, 9, 109–116. DOI: 10.1016/0146-6380(86)90100-2. http://dx.doi.org/10.1016/0146-6380(86)90100-210.1016/0146-6380(86)90100-2Search in Google Scholar

[8] Ghosh, K., & Schnitzer, M. (1980). Macromolecular structures of humic substances. Soil Science, 129, 266–276. http://dx.doi.org/10.1097/00010694-198005000-0000210.1097/00010694-198005000-00002Search in Google Scholar

[9] Hosse, M., & Wilkinson, K. J. (2001). Determination of electrophoretic mobilities and hydrodynamic radii of three humic substances as a function of pH and ionic strength. Environmental Science & Technology, 35, 4301–4306. DOI:10.1021/es010038r. http://dx.doi.org/10.1021/es010038r10.1021/es010038rSearch in Google Scholar

[10] Hayase, K., & Tsubota, H. (1983). Sedimentary humic acid and fulvic acid as surface active substances. Geochimica et Cosmochimica Acta, 47, 947–952. DOI: 10.1016/0016-7037(83)90160-6. http://dx.doi.org/10.1016/0016-7037(83)90160-610.1016/0016-7037(83)90160-6Search in Google Scholar

[11] Jager, M., Kaatze, U., Kudryashov, E., O’Driscoll, B., & Buckin, V. A. (2005). New capabilities of high-resolution ultrasonic spectroscopy: Titration analysis. Spectroscopy, 20(10), 24–26. Search in Google Scholar

[12] Jones, M. N., & Bryan, N. D. (1998). Colloidal properties of humic substances. Advances in Colloid and Interface Science, 78, 1–48. DOI: 10.1016/s0001-8686(98)00058-x. http://dx.doi.org/10.1016/S0001-8686(98)00058-X10.1016/S0001-8686(98)00058-XSearch in Google Scholar

[13] Kankia, B. I., Funck, T., Uedaira, H., & Buckin, V. A. (1997). Volume and compressibility effects in the formation of metal-EDTA complexes. Journal of Solution Chemistry, 26, 877–888. DOI: 10.1007/bf02768263. http://dx.doi.org/10.1007/BF0276826310.1007/BF02768263Search in Google Scholar

[14] Kharakoz, D. P., & Sarvazyan, A. P. (1993). Hydrational and intrinsic compressibilities of globular proteins. Biopolymers, 33, 11–26. DOI: 10.1002/bip.360330103. http://dx.doi.org/10.1002/bip.36033010310.1002/bip.360330103Search in Google Scholar

[15] Klučáková, M., & Pekař, M. (2008). Behaviour of partially soluble humic acids in aqueous suspension. Colloids and Surfaces, A: Physiochemical and Engineering Aspects, 318, 106–110. DOI: 10.1016/j.colsurfa.2007.12.023. http://dx.doi.org/10.1016/j.colsurfa.2007.12.02310.1016/j.colsurfa.2007.12.023Search in Google Scholar

[16] Kudryashov, E., Smyth, C., O’Driscoll, B., & Buckin, V. (2003). High-resolution ultrasonic spectroscopy for analysis of chemical reactions in real time. Spectroscopy, 18(10), 26–32. Search in Google Scholar

[17] Peuravuori, J., Žbánková, P., & Pihlaja, K. (2006). Aspects of structural features in lignite and lignite humic acids. Fuel Processing Technology, 87, 829–839. DOI:10.1016/j.fuproc.2006.05.003. http://dx.doi.org/10.1016/j.fuproc.2006.05.00310.1016/j.fuproc.2006.05.003Search in Google Scholar

[18] Piccolo, A., Nardi, S., & Concheri, G. (1996). Micelle-like conformation of humic substances as revealed by size exclusion chromatography. Chemosphere, 33, 595–602. DOI:10.1016/0045-6535(96)00210-x. http://dx.doi.org/10.1016/0045-6535(96)00210-X10.1016/0045-6535(96)00210-XSearch in Google Scholar

[19] Simpson, A. J. (2002). Determining the molecular weight, aggregation, structures and interactions of natural organic matter using diffusion ordered spectroscopy. Magnetic Resonance in Chemistry, 40, S72–S82. DOI: 10.1002/mrc.1106. http://dx.doi.org/10.1002/mrc.110610.1002/mrc.1106Search in Google Scholar

[20] Simpson, A. J., Kingery, W. L., Hayes, M. H. B., Spraul, M., Humpfer, E., Dvortsak, P., Kerssebaum, R., Godejohann, M., & Hofman, M. (2002). Molecular structure and associations of humic substances in the terrestrial environment. Naturwissenschaften, 89, 84–88. DOI: 10.1007/s00114-001-0293-8. http://dx.doi.org/10.1007/s00114-001-0293-810.1007/s00114-001-0293-8Search in Google Scholar PubMed

[21] Sutton, R., & Sposito, G. (2005). Molecular structure in soil humic substances: The new view. Environmental Science & Technology, 39, 9009–9015. DOI: 10.1021/es050778q. http://dx.doi.org/10.1021/es050778q10.1021/es050778qSearch in Google Scholar PubMed

[22] Tombácz, E. (1999). Colloidal properties of humic acids and spontaneous changes of their colloidal state under variable solution conditions. Soil Science, 164, 814–824. http://dx.doi.org/10.1097/00010694-199911000-0000510.1097/00010694-199911000-00005Search in Google Scholar

[23] Urick, R. J. (1947). A sound velocity method for determining the compressibility of finely divided substances. Journal of Applied Physics, 18, 983–987. DOI: 10.1063/1.1697584. http://dx.doi.org/10.1063/1.169758410.1063/1.1697584Search in Google Scholar

Published Online: 2012-6-22
Published in Print: 2012-9-1

© 2012 Institute of Chemistry, Slovak Academy of Sciences

Downloaded on 29.9.2025 from https://www.degruyterbrill.com/document/doi/10.2478/s11696-012-0199-2/html
Scroll to top button