Home Monitoring of yeast population isolated during spontaneous fermentation of Moravian wine
Article
Licensed
Unlicensed Requires Authentication

Monitoring of yeast population isolated during spontaneous fermentation of Moravian wine

  • Hana Šuranská EMAIL logo , Dana Vránová , Jiřina Omelková and Renáta Vadkertiová
Published/Copyright: June 22, 2012
Become an author with De Gruyter Brill

Abstract

In enology, yeasts play an important role in the characteristics of the final product. They are predominant in the biochemical interaction with components of must. Rapid identification of the yeast population is necessary for fermentation process monitoring and for obtaining a good quality wine. The main goal of this study was the isolation and characterisation of the yeast microbial community naturally present on grape berries, leaves and occurring during the spontaneous fermentation process of the white wine Veltlin green from the South Moravian region, Czech Republic. The results, based on PCR-RFLP of the 5.8S-ITS region of rDNA, PCR-fingerprinting using microsatellite oligonucleotide primers (GAG)5, (GTG)5, (GAC)5, and M13 primer, showed great diversity of the yeast population. Including grape berries and fermented must, the following yeast species were identified: Hanseniaspora uvarum, Aureobasidium pullulans, Metschnikowia pulcherrima, Torulaspora delbrueckii, a number of Pichia species such as P. fermentans, P. membranifaciens, P. kluyveri, also Sporidiobolus salmonicolor, Rhodosporidium toruloides, Rhodotorula mucilaginosa, Rhodotorula glutinis as well as Saccharomyces cerevisiae and Saccharomyces bayanus. Monitoring of the yeast strains during the wine fermentation process of traditional Moravian wine can contribute to the improvement of wine quality.

[1] Brežna, B., Ženišova, K., Chovanova, K., Chebeňova, V., Krakova, L., Kuchta, T., & Pangallo, D. (2010). Evaluation of fungal and yeast diversity in Slovakian wine-related microbial communities. Antonie van Leeuwenhoek, 98, 519–529. DOI: 10.1007/s10482-010-9469-6. http://dx.doi.org/10.1007/s10482-010-9469-610.1007/s10482-010-9469-6Search in Google Scholar

[2] Clemente-Jimenez, J. M., Mingorance-Cazorla, L., Martinez-Rodriguez, S., Las Heras-Vazquez, F. J., & Rodriguez-Vico, F. (2004). Molecular characterization of oenological properties of wine yeasts isolated during spontaneous fermentation of six varieties of grape must. Food Microbiology, 21, 149–155. DOI: 10.1016/s0740-0020(03)00063-7. http://dx.doi.org/10.1016/S0740-0020(03)00063-710.1016/S0740-0020(03)00063-7Search in Google Scholar

[3] Cocolin, L., Campolongo, S., Alessandria, V., Dolci, P., & Rantsiou, K. (2011). Culture independent analyses and wine fermentation: an overview of achievements 10 years after first application. Annals of Microbiology, 61, 17–23. DOI: 10.1007/s13213-010-0076-6. http://dx.doi.org/10.1007/s13213-010-0076-610.1007/s13213-010-0076-6Search in Google Scholar

[4] Da Silva-Filho, E. A., dos Santos, S. K. B., do Monte Resende, A., de Morais, J. O. F., de Morais, M. A., Jr., & Simões, D. A. (2005). Yeast population dynamics of industrial fuel-ethanol fermentation process assessed by PCR-fingerprinting. Antonie van Leeuwenhoek, 88, 13–23. DOI: 10.1007/s10482-004-7283-8. 10.1007/s10482-004-7283-8Search in Google Scholar

[5] Dos Santos, S. K. B., Basilio, A. C. M., Brasileiro, B. T. R. V., Simões, D. A., da Silva-Filho, E. A., & de Morais, M., Jr. (2007). Identification of yeasts within Saccharomyces sensu stricto complex by PCR-fingerprinting. World Journal of Microbiology & Biotechnology, 23, 1613–1620. DOI: 10.1007/s11274-007-9407-6. http://dx.doi.org/10.1007/s11274-007-9407-610.1007/s11274-007-9407-6Search in Google Scholar

[6] Esteve-Zarzoso, B., Belloch, C., Uruburu, F., & Querol, A. (1999). Identification of yeasts by RFLP analysis of the 5.8S rRNA gene and the two ribosomal internal transcribed spacers. International Journal of Systematic Bacteriology, 49, 329–337. DOI: 10.1099/00207713-49-1-329. http://dx.doi.org/10.1099/00207713-49-1-32910.1099/00207713-49-1-329Search in Google Scholar

[7] Fleet, G. H. (2001). Wine. In M. P. Doyle, L. R. Beuchat, & T. J. Montville (Eds.), Food microbiology: Fundamentals and frontiers (2nd ed., pp. 747–772). Washington, DC, USA: ASM Press. Search in Google Scholar

[8] Fleet, G. H., & Heard, G. M. (1993). Yeast—growth during fermentation. In G. H. Fleet (Ed.), Wine microbiology and biotechnology (Chapter 2, pp. 27–54). New York, NY, USA: Taylor & Francis. Search in Google Scholar

[9] Fleet, G. H., Prakitchaiwattana, C., Beh, A. L., & Heard, G. M. (2002). The yeast ecology of wine grapes. In M. Ciani (Ed.), Biodiversity and biotechnology of wine yeasts (pp. 1–17). Trivandrum, Kerala, India: Research Signpost. Search in Google Scholar

[10] Frezier, V. & Dubourdieu, D. (1992). Ecology of yeast strain Saccharomyces cerevisiae during spontaneous fermentation in a Bordeaux winery. American Journal of Enology and Viticulture, 43, 375–380. 10.5344/ajev.1992.43.4.375Search in Google Scholar

[11] Huang, C. H., Lee, F. L., & Tai, C. J. (2008) A novel specific DNA marker in Saccharomyces bayanus for species identification of the Saccharomyces sensu stricto complex. Journal of Microbiological Methods, 75, 531–534. DOI: 10.1016/j.mimet.2008.08.005. http://dx.doi.org/10.1016/j.mimet.2008.08.00510.1016/j.mimet.2008.08.005Search in Google Scholar

[12] Jolly, N. P., Augustyn, O. P. H., & Pretorius, I. S. (2006). The role and use of non-Saccharomyces yeasts in wine production. South African Journal of Enology and Viticulture, 27, 15–39. Search in Google Scholar

[13] Kurtzman, C. P., & Fell, J. W. (1998). Definition, classification and nomenclature of the yeasts. In: C. P. Kurtzman, & J. W. Fell (Eds.), The yeasts, a taxonomic study (4th ed., pp. 3–5). Amsterdam, The Netherlands: Elsevier. http://dx.doi.org/10.1016/B978-044481312-1/50004-610.1016/B978-044481312-1/50004-6Search in Google Scholar

[14] Le Jeune, C., Erny, C., Demuyter, C., & Lollier, M. (2006). Evolution of the population of Saccharomyces cerevisiae from grape to wine in a spontaneous fermentation. Food Microbiology, 23, 709–716. DOI: 10.1016/j.fm.2006.02.007. http://dx.doi.org/10.1016/j.fm.2006.02.00710.1016/j.fm.2006.02.007Search in Google Scholar

[15] Loureiro, V., & Malfeito-Ferreira, M. (2003). Spoilage yeasts in the wine industry. International Journal of Food Microbiology, 86, 23–50. DOI: 10.1016/s0168-1605(03)00246-0. http://dx.doi.org/10.1016/S0168-1605(03)00246-010.1016/S0168-1605(03)00246-0Search in Google Scholar

[16] Martini, A., & Vaughan-Martini, A. (1990). Grape must fermentation: past and present. In J. F. T. Spencer, & D. M. Spencer (Eds.), Yeast technology (pp. 105–123). Berlin, Germany: Springer. Search in Google Scholar

[17] Naumov, G. I. (1996). Genetic identification of biological species in the Saccharomyces sensu stricto complex. Journal of Industrial Microbiology, 17, 295–302. DOI: 10.1007/bf01574704. http://dx.doi.org/10.1007/BF0157470410.1007/BF01574704Search in Google Scholar

[18] Pretorius, I. S. (2000). Tailoring wine yeast for the new millennium: novel approaches to the ancient art of winemaking. Yeast, 16, 675–729. DOI: 10.1002/1097-0061 (20000615)16:8 〈675::AID-YEA585〉3.0.CO;2-B. http://dx.doi.org/10.1002/1097-0061(20000615)16:8<675::AID-YEA585>3.0.CO;2-B10.1002/1097-0061(20000615)16:8<675::AID-YEA585>3.0.CO;2-BSearch in Google Scholar

[19] Raspor, P., Milek, D. M., Polanc, J., Možina, S. S., & Čadež, N. (2006). Yeasts isolated from three varieties of grapes cultivated in different locations of the Dolenjska vine-growing region, Slovenia. International Journal of Food Microbiology, 109, 97–102. DOI: 10.1016/j.ijfoodmicro.2006.01.017. http://dx.doi.org/10.1016/j.ijfoodmicro.2006.01.01710.1016/j.ijfoodmicro.2006.01.017Search in Google Scholar

[20] Renouf, V., Claisse, O., & Lonvaud-Funel, A. (2007). Inventory and monitoring of wine microbial consortia. Applied Microbiology and Biotechnology, 75, 149–164. DOI: 10.1007/s00253-006-0798-3. http://dx.doi.org/10.1007/s00253-006-0798-310.1007/s00253-006-0798-3Search in Google Scholar

[21] Schena, L., Nigro, F., Pentimone, I., Ligorio, A., & Ippolito, A. (2003). Control of postharvest rots of sweet cherries and table grapes with endophytic isolates of Aureobasidium pullulans. Postharvest Biology and Technology, 30, 209–220. DOI: 10.1016/s0925-5214(03)00111-x. http://dx.doi.org/10.1016/S0925-5214(03)00111-X10.1016/S0925-5214(03)00111-XSearch in Google Scholar

[22] Schuller, D., Valero, E., Dequin, S., & Casal, M. (2004). Survey of molecular methods for the typing of wine yeast strains. FEMS Microbiology Letters, 231, 19–26. DOI: 10.1016/s0378-1097(03)00928-5. http://dx.doi.org/10.1016/S0378-1097(03)00928-510.1016/S0378-1097(03)00928-5Search in Google Scholar

[23] White, T. J., Bruns, T., Lee, S., & Taylor, J. (1990). Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In M. A. Innis, D. H. Gelfand, J. J. Sninski, & T. J. White (Eds.), PCR protocols: A guide to methods and applications (pp. 315–322). London, UK: Academic Press. Search in Google Scholar

[24] Yarrow, D. (1998). Methods for the isolation, maintenance and idenfication of yeasts. In C. P. Kurtzman, & J.W. Fell (Eds.), The yeasts, a taxonomic study (4th ed., pp. 77–100). Amsterdam, The Netherlands: Elsevier. http://dx.doi.org/10.1016/B978-044481312-1/50014-910.1016/B978-044481312-1/50014-9Search in Google Scholar

Published Online: 2012-6-22
Published in Print: 2012-9-1

© 2012 Institute of Chemistry, Slovak Academy of Sciences

Downloaded on 27.11.2025 from https://www.degruyterbrill.com/document/doi/10.2478/s11696-012-0198-3/pdf
Scroll to top button