Abstract
Processing the aerosol of metal salts in non-equilibrium plasma represents a promising technique that combines the advantages of spray pyrolysis with the high reactivity of plasmas at nearlaboratory temperature in order to produce mixed-oxides and perovskite materials. The aim of this paper is to describe the principles of this new technique and to present the various applications and latest developments. This technique’s capacity to deposit various mixed metal oxides with precise stoichiometry is demonstrated. It is shown that oxidant plasma species play a key role in the chemical transformation of starting materials into oxides at laboratory temperature, while the configuration of the reactor determines the morphology and texture of the deposited layers. Two different reactor configurations are presented. The porous layers of LaxSr1−x MnO3 as the cathode for fuel cells were synthesised in a wave shock reactor configuration, while nanostructured ZnO-Al layers to form a transparent conductive cathode for photovoltaic cells were deposited in the spray plasma reactor of the latest generation for this technique. The experimental results emphasise the role of plasma species in the rate of chemical reactions and in the chemical composition of the deposited layers.
[1] Ashkenov, N., Mbenkum, B. N., Bundesmann, C., Riede, V., Lorenz, M., Spemann, D., Kaidashev, E. M., Kasic, A., Schubert, M., Grundmann, M., Wagner, G., Neumann, H., Darakchieva, V., Arwin, H., & Monemar, B. (2003). Infrared dielectric functions and phonon modes of high-quality ZnO films. Journal of Applied Physics, 93, 126–133. DOI: 10.1063/1.1526935. http://dx.doi.org/10.1063/1.152693510.1063/1.1526935Search in Google Scholar
[2] Bell, A. T., & Kwong, K. (1972). Dissociation of oxygen in a radiofrequency electrical discharge. AIChE Journal, 18, 990–998. DOI: 10.1002/aic.690180516. http://dx.doi.org/10.1002/aic.69018051610.1002/aic.690180516Search in Google Scholar
[3] Burnat, D., Heel, A., Holzer, L., Kata, D., Lis, J., & Graule, T. (2012). Synthesis and performance of A-site deficient lanthanum-doped strontium titanate by nanoparticle based spray pyrolysis. Journal of Power Sources, 201, 26–36. DOI: 10.1016/j.jpowsour.2011.10.088. http://dx.doi.org/10.1016/j.jpowsour.2011.10.08810.1016/j.jpowsour.2011.10.088Search in Google Scholar
[4] Chamberlin, R. R., & Skarman, J. S. (1966). Chemical spray deposition process for inorganic films. Journal of Electrochemical Society, 113, 86–89. DOI: 10.1149/1.2423871. http://dx.doi.org/10.1149/1.242387110.1149/1.2423871Search in Google Scholar
[5] Damen, T. C., Porto, S. P. S., & Tell, B. (1966). Raman effect in zinc oxide. Physical Reviews, 142, 570–574. DOI: 10.1103/PhysRev.142.570. http://dx.doi.org/10.1103/PhysRev.142.57010.1103/PhysRev.142.570Search in Google Scholar
[6] Fisenko, S. P., Wang, W. N., Lenggoro, I. W., & Okyuama, K. (2006). Evaporative cooling of micron-sized droplets in a low-pressure aerosol reactor. Chemical Engineering Science, 61, 6029–6034. DOI: 10.1016/j.ces.2006.05.028. http://dx.doi.org/10.1016/j.ces.2006.05.02810.1016/j.ces.2006.05.028Search in Google Scholar
[7] Fuchs, N. A. (1959). Evaporation and droplet growth in gaseous media. New York, NY, USA: Pergamon Press. Search in Google Scholar
[8] Gautherin, G. (1984). Interaction plasma-surface. In A. M. Pointu, & A. Ricard (Eds.), Réactivité dans les plasmas: Applications aux lasers et au traitement de surfaces (pp 243–262). Les Ulis, France: Les éditions de Physique. Search in Google Scholar
[9] Grill, A. (1993). Cold plasma in materials fabrication. From fundamentals to applications. New York, NY, USA: IEEE Press. Search in Google Scholar
[10] Huang, Y., Liu, M., Li, Z., Zeng, Y., & Liu, S. (2003). Raman spectroscopy study of ZnO-based ceramic films fabricated by novel sol-gel process. Materials Science and Engineering: B, 97, 111–116. DOI: 10.1016/s0921-5107(02)00396-3. http://dx.doi.org/10.1016/S0921-5107(02)00396-310.1016/S0921-5107(02)00396-3Search in Google Scholar
[11] Miralai, S. F., Avni, R., Franke, E., Morvan, D., Amouroux, J., & Nickel, H. (1995). European patent No 9500518. Munich, Germany: European Patent Office. Search in Google Scholar
[12] Nikravech, M. (2010) Spray plasma device, a new method to process nanostructured layers. Application to deposit ZnO thin layers. Journal of Nanoscience and Nanotechnology, 10, 1171–1178. DOI: 10.1166/jnn.2010.1870. http://dx.doi.org/10.1166/jnn.2010.187010.1166/jnn.2010.1870Search in Google Scholar
[13] Nikravech, M., Baba, K., & Labidi, S. (2011). Plasma/catalysis process. Application to CH4+CO2 reforming to produce syngas. In 8th Conference on the Interdisciplinary Program Energy CNRS, March 28–30, 2011 (pp. 65). Montpellier, France. Search in Google Scholar
[14] Nikravech, M., Bauduin, N., Morvan, D., & Amouroux, J. (2001). Low-pressure RF plasma shock wave reactor to synthesise and deposit of Sr doped LaMnO3 thin layers for fuel cell applications. In A. Bouchoule, J. M. Pouvesle, A. L. Thomann, J. M. Bauchire, & E. Robert (Eds.), Proceedings of the 15th International Symposium on Plasma Chemistry, July 9–13, 2001 (pp. 1971–1976), Orléans, France. Search in Google Scholar
[15] Nikravech, M., Rousseau, F., Morvan, D., & Amouroux, J. (2002). Characteristics of Sr-doped LaMnO3 thin layers deposited with a low-pressure RF plasma wave shock reactor. In J. Huijsmans (Ed.), Proceedings of 5th European Solid Oxide Fuel Cell Forum, July 1–5, 2002 (Vol. 1, pp. 377–384). Lucerne, Switzerland. Search in Google Scholar
[16] Nikravech, M., Rousseau, F., Morvan, D., & Amouroux, J. (2003a). Effects of plasma parameters on the properties of La1−x SrxMnO3 thin layers deposited in low-pressure RF plasma wave shock reactor. High Temperature Material Processes, 7, 225–230. DOI: 10.1615/HighTempMat-Proc.v7.i2.120. http://dx.doi.org/10.1615/HighTempMatProc.v7.i2.12010.1615/HighTempMatProc.v7.i2.120Search in Google Scholar
[17] Nikravech, M., Rousseau, F., Morvan, D., & Amouroux, J. (2003b). Production of perovskite deposits for fuel cells by plasma process. Journal of Physics and Chemistry of Solids, 64, 1771–1775. DOI: 10.1016/s0022-3697(03)00128-8. http://dx.doi.org/10.1016/S0022-3697(03)00128-810.1016/S0022-3697(03)00128-8Search in Google Scholar
[18] Patil, P. S. (1999). Versatility of chemical spray pyrolysis technique. Materials Chemistry and Physics, 59, 185–198. DOI: 10.1016/s0254-0584(99)00049-8. http://dx.doi.org/10.1016/S0254-0584(99)00049-810.1016/S0254-0584(99)00049-8Search in Google Scholar
[19] Rousseau, F. (2005). Etude des mécanismes de formation des couches d’oxydes Perovskite par procédé plasma basse pression à tuyère supersonique pour l’élaboration de la cathode des piles à combustible SOFC. Modélisation et caractérisation expérimentale. Ph.D. thesis, University of Pierre and Marie Curie, Paris, France. Search in Google Scholar
[20] Rousseau, F., Awamat, S., Nikravech, M., Morvan, D., & Amouroux, J. (2007). Deposit of dense YSZ electrolyte and porous NiO-YSZ anode for SOFC device by a low pressure plasma process. Surface and Coatings Technology, 202, 1226–1230. DOI: 10.1016/j.surfcoat.2007.07.089. http://dx.doi.org/10.1016/j.surfcoat.2007.07.08910.1016/j.surfcoat.2007.07.089Search in Google Scholar
[21] Sasaki, T., Matsumoto, Y., & Hombo, J. (1992). A new preparation method of lanthanum cobalt oxide, LaCoO3, perovskite using electrochemical oxidation. Inorganic Chemistry, 31, 738–741. DOI: 10.1021/ic00031a009. http://dx.doi.org/10.1021/ic00031a00910.1021/ic00031a009Search in Google Scholar
[22] Sasaki, T., Matsumoto, Y., Hombo, J., & Ogawa, H. (1991) A new preparation method of LaMnO3 perovskite using electrochemical oxidation, Journal of Solid State Chemistry, 91, 61–70. DOI: 10.1016/0022-4596(91)90058-p. http://dx.doi.org/10.1016/0022-4596(91)90058-P10.1016/0022-4596(91)90058-PSearch in Google Scholar
[23] Thomas, D. G. (1960). The exciton spectrum of zinc oxide. Journal of Physics and Chemistry of Solids, 15, 86–96. DOI: 10.1016/0022-3697(60)90104-9. http://dx.doi.org/10.1016/0022-3697(60)90104-910.1016/0022-3697(60)90104-9Search in Google Scholar
[24] Wang, C., Chen, Z., Hu, H., & Zhang, D. (2009). Effect of the oxygen pressure on the microstructure and optical properties of ZnO films prepared by laser molecular beam epitaxy. Physica B: Condensed Matter, 404, 4075–4082. DOI: 10.1016/j.physb.2009.07.165. http://dx.doi.org/10.1016/j.physb.2009.07.16510.1016/j.physb.2009.07.165Search in Google Scholar
[25] Williamson, G. K., & Hall, W. H. (1953). X-ray line broadening from filed aluminium and wolfram. Acta Metallurgica, 1, 22–31. DOI: 10.1016/0001-6160(53)90006-6. http://dx.doi.org/10.1016/0001-6160(53)90006-610.1016/0001-6160(53)90006-6Search in Google Scholar
[26] Zhang, Z. C., Huang B. B., Yu, Y. Q., & Cui, D. L. (2001). Electrical properties and Raman spectra of undoped and Al-doped ZnO thin films by metalorganic vapor phase epitaxy. Materials Science & Engineering: B, 86, 109–112. DOI: 10.1016/s0921-5107(01)00522-0. http://dx.doi.org/10.1016/S0921-5107(01)00627-410.1016/S0921-5107(01)00522-0Search in Google Scholar
© 2012 Institute of Chemistry, Slovak Academy of Sciences
Articles in the same Issue
- Ultrathin organic, inorganic, hybrid, and living cell coatings — Topical Issue
- Functional polymer thin films designed for antifouling materials and biosensors
- In-situ polymerized molecularly imprinted polymeric thin films used as sensing layers in surface plasmon resonance sensors: Mini-review focused on 2010–2011
- Design of polyglycidol-containing microspheres for biomedical applications
- On the interfacial chemistry of aryl diazonium compounds in polymer science
- Polypyrrole coating of inorganic and organic materials by chemical oxidative polymerisation
- Spectroscopy of thin polyaniline films deposited during chemical oxidation of aniline
- Ultrathin functional films of titanium(IV) oxide
- Sol-gel thin films with anti-reflective and self-cleaning properties
- Nanostructured electrocatalysts immobilised on electrode surfaces and organic film templates
- Influence of adsorbed oxygen on charge transport and chlorine gas-sensing characteristics of thin cobalt phthalocyanine films
- Ni-W alloy coatings deposited from a citrate electrolyte
- Role of reactive species in processing materials at laboratory temperature by spray plasma devices
- Electrodeposition of hafnium and hafnium-based coatings in molten salts
- Role of interfacial chemistry on the rheology and thermo-mechanical properties of clay-polymer nanocomposites for building applications
- Endothelial cell adhesion on polyelectrolyte multilayer films functionalised with fibronectin and collagen
Articles in the same Issue
- Ultrathin organic, inorganic, hybrid, and living cell coatings — Topical Issue
- Functional polymer thin films designed for antifouling materials and biosensors
- In-situ polymerized molecularly imprinted polymeric thin films used as sensing layers in surface plasmon resonance sensors: Mini-review focused on 2010–2011
- Design of polyglycidol-containing microspheres for biomedical applications
- On the interfacial chemistry of aryl diazonium compounds in polymer science
- Polypyrrole coating of inorganic and organic materials by chemical oxidative polymerisation
- Spectroscopy of thin polyaniline films deposited during chemical oxidation of aniline
- Ultrathin functional films of titanium(IV) oxide
- Sol-gel thin films with anti-reflective and self-cleaning properties
- Nanostructured electrocatalysts immobilised on electrode surfaces and organic film templates
- Influence of adsorbed oxygen on charge transport and chlorine gas-sensing characteristics of thin cobalt phthalocyanine films
- Ni-W alloy coatings deposited from a citrate electrolyte
- Role of reactive species in processing materials at laboratory temperature by spray plasma devices
- Electrodeposition of hafnium and hafnium-based coatings in molten salts
- Role of interfacial chemistry on the rheology and thermo-mechanical properties of clay-polymer nanocomposites for building applications
- Endothelial cell adhesion on polyelectrolyte multilayer films functionalised with fibronectin and collagen