Home On the interfacial chemistry of aryl diazonium compounds in polymer science
Article
Licensed
Unlicensed Requires Authentication

On the interfacial chemistry of aryl diazonium compounds in polymer science

  • Zakaria Salmi EMAIL logo , Sarra Gam-Derouich , Samia Mahouche-Chergui , Mireille Turmine and Mohamed Chehimi
Published/Copyright: April 5, 2012
Become an author with De Gruyter Brill

Abstract

This review emphasises the role of aryl diazonium compounds as a new class of coupling agents for grafting polymer thin layers onto carbon, diamond, metals, metal oxides, alloys, semi-conductors, ceramics, and polymers. Physical and chemical methods are first reported for anchoring aryl layers to the surfaces, then the review concentrates on the modification of the above substrates by thin polymer films via a range of the “grafting from” and “grafting onto” strategies. Some applications are described which highlight the important role that diazonium salts will continue to play in the near future in the polymer and surface sciences.

[1] Adenier, A., Barré, N., Cabet-Deliry, E., Chaussé, A., Griveau, S., Mercier, F., Pinson, J., & Vautrin-Ul, C. (2006a). Study of the spontaneous formation of organic layers on carbon and metal surfaces from diazonium salts. Surface Science, 600, 4801–4812. DOI: 10.1016/j.susc.2006.07.061. http://dx.doi.org/10.1016/j.susc.2006.07.06110.1016/j.susc.2006.07.061Search in Google Scholar

[2] Adenier, A., Bernard, M. C., Chehimi, M. M., Cabet-Deliry, E., Desbat, B., Fagebaume, O., Pinson, J., & Podvorica, F. (2001). Covalent modification of iron surfaces by electrochemical reduction of aryldiazonium salts. Journal of the American Chemical Society, 123, 4541–4549. DOI: 10.1021/ja003276f. http://dx.doi.org/10.1021/ja003276f10.1021/ja003276fSearch in Google Scholar PubMed

[3] Adenier, A., Cabet-Deliry, E., Lalot, T., Pinson, J., & Podvorica, F. (2002). Attachment of polymers to organic moieties covalently bonded to iron surfaces. Chemistry of Materials, 14, 4576–4585. DOI: 10.1021/cm0211397. http://dx.doi.org/10.1021/cm021139710.1021/cm0211397Search in Google Scholar

[4] Adenier, A., Combellas, C., Kanoufi, F., Pinson, J., & Podvorica, F. I. (2006b). Formation of polyphenylene films on metal electrodes by electrochemical reduction of benzenediazonium salts. Chemistry of Materials, 18, 2021–2029. DOI: 10.1021/cm052065c. http://dx.doi.org/10.1021/cm052065c10.1021/cm052065cSearch in Google Scholar

[5] Alchimedics Co. (2001). Presentation of the revolutionary BuMA drug eluting stent. Retrieved on November 2011 from: http://www.youtube.com/watch?v=cRPPhFWsyqI Search in Google Scholar

[6] Almeida, I., Cascalheira, A. C., & Viana, A. S. (2010). One step gold (bio)functionalisation based on CS2-amine reaction. Electrochimica Acta, 55, 8686–8695. DOI: 10.1016/j.electacta.2010.07.084. http://dx.doi.org/10.1016/j.electacta.2010.07.08410.1016/j.electacta.2010.07.084Search in Google Scholar

[7] Bahr, J. L., & Tour, J. M. (2001). Highly functionalized carbon nanotubes using in situ generated diazonium compounds. Chemistry of Materials, 13, 3823–3824. DOI: 10.1021/cm0109903. http://dx.doi.org/10.1021/cm010990310.1021/cm0109903Search in Google Scholar

[8] Bahr, J. L., Yang, J., Kosynkin, D. V., Bronikowski, M. J., Smalley, R. E., & Tour, J. M. (2001). Functionalization of carbon nanotubes by electrochemical reduction of aryl diazonium salts: A bucky paper electrode. Journal of the American Chemical Society, 123, 6536–6542. DOI: 10.1021/ja010462s. http://dx.doi.org/10.1021/ja010462s10.1021/ja010462sSearch in Google Scholar PubMed

[9] Baranton, S., & Bélanger, D. (2005). Electrochemical derivatization of carbon surface by reduction of in situ generated diazonium cations. The Journal of Physical Chemistry B, 109, 24401–24410. DOI: 10.1021/jp054513+. http://dx.doi.org/10.1021/jp054513+10.1021/jp054513+Search in Google Scholar PubMed

[10] Barbey, R., Lavanant, L., Paripovic, D., Schüwer, N., Sugnaux, C., Tugulu, S., & Klok, H. A. (2009). Polymer brushes via surface-initiated controlled radical polymerization: Synthesis, characterization, properties, and applications. Chemical Reviews, 109, 5437–5527. DOI: 10.1021/cr900045a. http://dx.doi.org/10.1021/cr900045a10.1021/cr900045aSearch in Google Scholar PubMed

[11] Barsbay, M., & Güven, O. (2009). A short review of radiation-induced raft-mediated graft copolymerization: A powerful combination for modifying the surface properties of polymers in a controlled manner. Radiation Physics and Chemistry, 78, 1054–1059. DOI: 10.1016/j.radphyschem.2009.06.022. http://dx.doi.org/10.1016/j.radphyschem.2009.06.02210.1016/j.radphyschem.2009.06.022Search in Google Scholar

[12] Baskin, J. M., Prescher, J. A., Laughlin, S. T., Agard, N. J., Chang, P. V., Miller, I. A., Lo, A., Codelli, J. A., & Bertozzi, C. R. (2007). Copper-free click chemistry for dynamic in vivo imaging. Proceedings of the National Academy of Sciences of the United States of America, 104, 16793–16797. DOI: 10.1073/pnas.0707090104. http://dx.doi.org/10.1073/pnas.070709010410.1073/pnas.0707090104Search in Google Scholar PubMed PubMed Central

[13] Bélanger, D., & Pinson, J. (2011). Electrografting: a powerful method for surface modification. Chemical Society Reviews, 40, 3995–4048. DOI: 10.1039/c0cs00149j. http://dx.doi.org/10.1039/c0cs00149j10.1039/c0cs00149jSearch in Google Scholar PubMed

[14] Bernard, M. C., Chaussé, A., Cabet-Deliry, E., Chehimi, M. M., Pinson, J., Podvorica, F., & Vautrin-Ul, C. (2003). Organic layers bonded to industrial, coinage, and noble metals through electrochemical reduction of aryldiazonium salts. Chemistry of Materials, 15, 3450–3462. DOI: 10.1021/cm034167d. http://dx.doi.org/10.1021/cm034167d10.1021/cm034167dSearch in Google Scholar

[15] Boukerma, K., Chehimi, M. M., Pinson, J., & Blomfield, C. (2003). X-ray photoelectron spectroscopy evidence for the covalent bond between an iron surface and aryl groups attached by the electrochemical reduction of diazonium salts. Langmuir, 19, 6333–6335. DOI: 10.1021/la030046g. http://dx.doi.org/10.1021/la030046g10.1021/la030046gSearch in Google Scholar

[16] Cabot Co. (2011). Carbon and pigment surface modification. Retrieved on November 2011 from http://www.cabotcorp.com/Research-and-Development/Particle-Design-For-Performance/Surface-Modification/GN200811251337PM2192/ Search in Google Scholar

[17] Chen, R. J., Zhang, Y., Wang, D., & Dai, H. (2001). Noncovalent sidewall functionalization of single-walled carbon nanotubes for protein immobilization. Journal of the American Chemical Society, 123, 3838–3839. DOI: 10.1021/ja010172b. http://dx.doi.org/10.1021/ja010172b10.1021/ja010172bSearch in Google Scholar PubMed

[18] Chen, X., Yuan, L., Yang, P., Hu, J., & Yang, D. (2011). Covalent polymeric modification of graphene nanosheets via surface-initiated single-electron-transfer living radical polymerization. Journal of Polymer Science Part A: Polymer Chemistry, 49, 4977–4986. DOI: 10.1002/pola.24953. http://dx.doi.org/10.1002/pola.2495310.1002/pola.24953Search in Google Scholar

[19] Combellas, C., Kanoufi, F., Pinson, J., & Podvorica, F. I. (2008). Sterically hindered diazonium salts for the grafting of a monolayer on metals. Journal of the American Chemical Society, 130, 8576–8577. DOI: 10.1021/ja8018912. http://dx.doi.org/10.1021/ja801891210.1021/ja8018912Search in Google Scholar PubMed

[20] Coulon, E., Pinson, J., Bourzat, J. D., Commerçon, A., & Pulicani, J. P. (2002). Surface-modified carbon felts: possible supports for combinatorial chemistry. The Journal of Organic Chemistry, 67, 8513–8518. DOI: 10.1021/jo025880+. http://dx.doi.org/10.1021/jo025880+10.1021/jo025880+Search in Google Scholar PubMed

[21] Dahoumane, S. A., Nguyen, M. N., Thorel, A., Boudou, J. P., Chehimi, M. M., & Mangeney, C. (2009). Protein-functionalized hairy diamond nanoparticles. Langmuir, 25, 9633–9638. DOI: 10.1021/la9009509. http://dx.doi.org/10.1021/la900950910.1021/la9009509Search in Google Scholar PubMed

[22] Daou, T. J., Grenèche, J. M., Pourroy, G., Buathong, S., Derory, A., Ulhaq-Bouillet, C., Donnio, B., Guillon, D., & Begin-Colin, S. (2008). Coupling agent effect on magnetic properties of functionalized magnetite-based nanoparticles. Chemistry of Materials, 20, 5869–5875. DOI: 10.1021/cm801405n. http://dx.doi.org/10.1021/cm801405n10.1021/cm801405nSearch in Google Scholar

[23] Delamar, M., Désarmot, G., Fagebaume, O., Hitmi, R., Pinson, J., & Savéant, J. M. (1997). Modification of carbon fiber surfaces by electrochemical reduction of aryl diazonium salts: Application to carbon epoxy composites. Carbon, 35, 801–807. DOI: 10.1016/s0008-6223(97)00010-9. http://dx.doi.org/10.1016/S0008-6223(97)00010-910.1016/S0008-6223(97)00010-9Search in Google Scholar

[24] Delamar, M., Hitmi, R., Pinson, J., & Savéant, J. M. (1992). Covalent modification of carbon surfaces by grafting of functionalized aryl radicals produced from electrochemical reduction of diazonium salts. Journal of the American Chemical Society, 114, 5883–5884. DOI: 10.1021/ja00040a074. http://dx.doi.org/10.1021/ja00040a07410.1021/ja00040a074Search in Google Scholar

[25] Deniau, G., Azoulay, L., Bougerolles, L., & Palacin, S. (2006). Surface electroinitiated emulsion polymerization: Grafted organic coatings from aqueous solutions. Chemistry of Materials, 18, 5421–5428. DOI: 10.1021/cm060739t. http://dx.doi.org/10.1021/cm060739t10.1021/cm060739tSearch in Google Scholar

[26] Djouani, F., Herbst, F., Chehimi, M. M., & Benzarti, K. (2011). Synthesis, characterization and reinforcing properties of novel, reactive clay/poly(glycidyl methacrylate) nanocomposites. Construction and Building Materials, 25, 424–431. DOI: 10.1016/j.conbuildmat.2010.01.003. http://dx.doi.org/10.1016/j.conbuildmat.2010.01.00310.1016/j.conbuildmat.2010.01.003Search in Google Scholar

[27] Doppelt, P., Hallais, G., Pinson, J., Podvorica, F., & Verneyre, S. (2007). Surface modification of conducting substrates. Existence of azo bonds in the structure of organic layers obtained from diazonium salts. Chemistry of Materials, 19, 4570–4575. DOI: 10.1021/cm0700551. http://dx.doi.org/10.1021/cm070055110.1021/cm0700551Search in Google Scholar

[28] Dyer, D. J. (2006). Photoinitiated synthesis of grafted polymers. Advances in Polymer Science, 197, 47–65. DOI: 10.1007/12 064. http://dx.doi.org/10.1007/12_064Search in Google Scholar

[29] Dyke, C. A., & Tour, J. M. (2003). Unbundled and highly functionalized carbon nanotubes from aqueous reactions. Nano Letters, 3, 1215–1218. DOI: 10.1021/nl034537x. http://dx.doi.org/10.1021/nl034537x10.1021/nl034537xSearch in Google Scholar

[30] Edmondson, S., Osborne, V. L., & Huck, W. T. S. (2004). Polymer brushes via surface-initiated polymerizations. Chemical Society Reviews, 33, 14–22. DOI: 10.1039/b210143m. http://dx.doi.org/10.1039/b210143m10.1039/b210143mSearch in Google Scholar PubMed

[31] Esteves, A. C. C., Bombalski, L., Trindade, T., Matyjaszewski, K., & Barros-Timmons, A. (2007). Polymer grafting from CdS quantum dots via AGET ATRP in miniemulsion. Small, 3, 1230–1236. DOI: 10.1002/smll.200600510. http://dx.doi.org/10.1002/smll.20060051010.1002/smll.200600510Search in Google Scholar PubMed

[32] Fang, M., Wang, K., Lu, H., Yang, Y., & Nutt, S. (2009). Covalent polymer functionalization of graphene nanosheets and mechanical properties of composites. Journal of Materials Chemistry, 19, 7098–7105. DOI: 10.1039/b908220d. http://dx.doi.org/10.1039/b908220d10.1039/b908220dSearch in Google Scholar

[33] Fang, M., Wang, K., Lu, H., Yang, Y., & Nutt, S. (2010). Single-layer graphene nanosheets with controlled grafting of polymer chains. Journal of Materials Chemistry, 20, 1982–1992. DOI: 10.1039/b919078c. http://dx.doi.org/10.1039/b919078c10.1039/b919078cSearch in Google Scholar

[34] Flavel, B. S., Gross, A. J., Garrett, D. J., Nock, V., & Downard, A. J. (2010). A simple approach to patterned protein immobilization on silicon via electrografting from diazonium salt solutions. ACS Applied Materials & Interfaces, 2, 1184–1190. DOI: 10.1021/am100020a. http://dx.doi.org/10.1021/am100020a10.1021/am100020aSearch in Google Scholar PubMed

[35] Fontaine, O., Ghilane, J., Martin, P., Lacroix, J. C., & Randriamahazaka, H. (2010). Ionic liquid viscosity effects on the functionalization of electrode material through the electroreduction of diazonium. Langmuir, 26, 18542–18549. DOI: 10.1021/la103000u. http://dx.doi.org/10.1021/la103000u10.1021/la103000uSearch in Google Scholar PubMed

[36] Fu, G. D., Kang, E. T., & Neoh, K. G. (2010). Silane coupling agents for surface-initiated living polymerizations. In K. L. Mittal (Ed.), Silanes and other coupling agents (Vol. 5, pp. 261). Leiden, The Netherlands: Koninklijke Brill NV. DOI: 10.1163/ej.9789004165915.i-348.154. 10.1163/ej.9789004165915.i-348.154Search in Google Scholar

[37] Gam-Derouich, S., Carbonnier, B., Turmine, M., Lang, P., Jouini, M., Ben Hassen-Chehimi, D., & Chehimi, M. M. (2010a). Electrografted aryl diazonium initiators for surface-confined photopolymerization: a new approach to designing functional polymer coatings. Langmuir, 26, 11830–11840. DOI: 10.1021/la100880j. http://dx.doi.org/10.1021/la100880j10.1021/la100880jSearch in Google Scholar PubMed

[38] Gam-Derouich, S., Gosecka, M., Lepinay, S., Turmine, M., Carbonnier, B., Basinska, T., Slomkowski, S., Millot, M. C., Othmane, A., Ben Hassen-Chehimi, D., & Chehimi, M. M. (2011a). Highly hydrophilic surfaces from polyglycidol grafts with dual antifouling and specific protein recognition properties. Langmuir, 27, 9285–9294. DOI: 10.1021/la200290k. 10.1021/la200290kSearch in Google Scholar PubMed

[39] Gam-Derouich, S., Jouini, M., Ben Hassen-Chehimi, D., & Chehimi, M. M. (2011b). Aryl diazonium salt surface chemistry and graft photopolymerization for the preparation of molecularly imprinted polymer biomimetic sensor layers. Electrochimica Acta, in press. DOI: 10.1016/j.electacta.2011.11.022. 10.1016/j.electacta.2011.11.022Search in Google Scholar

[40] Gam-Derouich, S., Mahouche-Chergui, S., Truong, S., Ben Hassen-Chehimi, D., & Chehimi, M. M. (2011c). Design of molecularly imprinted polymer grafts with embedded gold nanoparticles through the interfacial chemistry of aryl diazonium salts. Polymer, 52, 4463–4470. DOI: 10.1016/j.polymer.2011.08.007. http://dx.doi.org/10.1016/j.polymer.2011.08.00710.1016/j.polymer.2011.08.007Search in Google Scholar

[41] Gam-Derouich, S., Mahouche-Chergui, S., Turmine, M., Piquemal, J. Y., Ben Hassen-Chehimi, D., Omastová, M., & Chehimi, M. M. (2011d). A versatile route for surface modification of carbon, metals and semi-conductors by diazonium salt-initiated photopolymerization. Surface Science, 605, 1889–1899. DOI: 10.1016/j.susc.2011.06.029. http://dx.doi.org/10.1016/j.susc.2011.06.02910.1016/j.susc.2011.06.029Search in Google Scholar

[42] Gam-Derouich, S., Nguyen, M. N., Madani, A., Maouche, N., Lang, P., Perruchot, C., & Chehimi, M. M. (2010b). Aryl diazonium salt surface chemistry and ATRP for the preparation of molecularly imprinted polymer grafts on gold substrates. Surface and Interface Analysis, 42, 1050–1056. DOI: 10.1002/sia.3210. http://dx.doi.org/10.1002/sia.321010.1002/sia.3210Search in Google Scholar

[43] Gehan, H., Fillaud, L., Chehimi, M. M., Aubard, J., Hohenau, A., Felidj, N., & Mangeney, C. (2010). Thermo-induced electromagnetic coupling in gold/polymer hybrid plasmonic structures probed by surface-enhanced Raman scattering. ACS Nano, 4, 6491–6500. DOI: 10.1021/nn101451q. http://dx.doi.org/10.1021/nn101451q10.1021/nn101451qSearch in Google Scholar PubMed

[44] Girard, H. A., Arnault, J. C., Perruchas, S., Saada, S., Gacoin, T., Boilot, J. P., & Bergonzo, P. (2010). Hydrogenation of nanodiamonds using MPCVD: A new route toward organic functionalization. Diamond & Related Materials, 19, 1117–1123. DOI: 10.1016/j.diamond.2010.03.019. http://dx.doi.org/10.1016/j.diamond.2010.03.01910.1016/j.diamond.2010.03.019Search in Google Scholar

[45] Gobitz, G. (1988). Immobilization of compounds for selective interaction with analytes in liquid chromatography. In R. W. Frei, & K. Zech (Eds.), Selective sample handling and detection in high-performance liquid chromatography (Chapter 3, pp. 145–207). Amsterdam, The Nederlands: Elsevier. DOI: 10.1016/s0301-4770(08)60379-6. http://dx.doi.org/10.1016/S0301-4770(08)60379-610.1016/S0301-4770(08)60379-6Search in Google Scholar

[46] Han, J. H., & Yoon, J. Y. (2009). Reusable, polyethylene glycolstructured microfluidic channel for particle immunoassays. Journal of Biological Engineering, 3, 6. DOI: 10.1186/1754-1611-3-6. http://dx.doi.org/10.1186/1754-1611-3-610.1186/1754-1611-3-6Search in Google Scholar PubMed PubMed Central

[47] Hauquier, F., Matrab, T., Kanoufi, F., & Combellas, C. (2009). Local direct and indirect reduction of electrografted aryldiazonium/gold surfaces for polymer brushes patterning. Electrochimica Acta, 54, 5127–5136. DOI: 10.1016/j.electacta.2009.01.059. http://dx.doi.org/10.1016/j.electacta.2009.01.05910.1016/j.electacta.2009.01.059Search in Google Scholar

[48] He, H., Zhang, Y., Gao, C., & Wu, J. (2009). ’Clicked’ magnetic nanohybrids with a soft polymer interlayer. Chemical Communications, 2009, 1655–1657. DOI: 10.1039/b821280e. http://dx.doi.org/10.1039/b821280e10.1039/b821280eSearch in Google Scholar PubMed

[49] Hurley, B. L., & McCreery, R. L. (2004). Covalent bonding of organic molecules to Cu and Al alloy 2024 T3 surfaces via diazonium ion reduction. Journal of the Electrochemical Society, 151, B252–B259. DOI: 10.1149/1.1687428. http://dx.doi.org/10.1149/1.168742810.1149/1.1687428Search in Google Scholar

[50] Iruthayaraj, J., Chernyy, S., Lillethorup, M., Ceccato, M., Røn, T., Hinge, M., Kingshott, P., Besenbacher, F., Uttrup Pedersen, S., & Daasbjerg, K. (2011). On surface-initiated atom transfer radical polymerization using diazonium chemistry to introduce the initiator layer. Langmuir, 27, 1070–1078. DOI: 10.1021/la104125n. http://dx.doi.org/10.1021/la104125n10.1021/la104125nSearch in Google Scholar PubMed

[51] Jiang, D. E., Sumpter, B. G., & Dai, S. (2006a). Structure and bonding between an aryl group and metal surfaces. Journal of the American Chemical Society, 128, 6030–6031. DOI: 10.1021/ja061439f. http://dx.doi.org/10.1021/ja061439f10.1021/ja061439fSearch in Google Scholar PubMed

[52] Jiang, D. E., Sumpter, B. G., & Dai, S. (2006b). How do aryl groups attach to a graphene sheet? The Journal of Physical Chemistry B, 110, 23628–23632. DOI: 10.1021/jp065980+. http://dx.doi.org/10.1021/jp065980+10.1021/jp065980Search in Google Scholar

[53] Joselevich, M., & Williams, F. J. (2008). Synthesis and characterization of diazonium functionalized nanoparticles for deposition on metal surfaces. Langmuir, 24, 11711–11717. DOI: 10.1021/la802247k. http://dx.doi.org/10.1021/la802247k10.1021/la802247kSearch in Google Scholar PubMed

[54] Kozak, H., Remes, Z., Kromka, A., & Ledinsky, M. (2011). Optical characterisation of organosilane-modified nanocrystalline diamond films. Chemical Papers, 65, 36–41. DOI: 10.2478/s11696-010-0095-6. http://dx.doi.org/10.2478/s11696-010-0095-610.2478/s11696-010-0095-6Search in Google Scholar

[55] Laurentius, L., Stoyanov, S. R., Gusarov, S., Kovalenko, A., Du, R., Lopinski, G. P., & McDermott, M. T. (2011). Diazonium-derived aryl films on gold nanoparticles: Evidence for a carbon-gold covalent bond. ACS Nano, 5, 4219–4227. DOI: 10.1021/nn201110r. http://dx.doi.org/10.1021/nn201110r10.1021/nn201110rSearch in Google Scholar PubMed

[56] Le, X. T., Viel, P., Jégou, P., Sorin, A., & Palacin, S. (2009). Electrochemical-switchable polymer film: An emerging technique for treatment of metallic ion aqueous waste. Separation and Purification Technology, 69, 135–140. DOI: 10.1016/j.seppur.2009.07.010. http://dx.doi.org/10.1016/j.seppur.2009.07.01010.1016/j.seppur.2009.07.010Search in Google Scholar

[57] Lessant, J., Simic, V., Fantini, S., Raymond, P., & Viel, P. (2007). Conductive or semi-conductive material modified by electrochemical grafting of polymer films. PCT Patent Application, WO 2007/012630. Search in Google Scholar

[58] Li, H., Cheng, F., Duft, A. M., & Adronov, A. (2005). Functionalization of single-walled carbon nanotubes with well-defined polystyrene by “click” coupling. Journal of the American Chemical Society, 127, 14518–14524. DOI: 10.1021/ja054958b. http://dx.doi.org/10.1021/ja054958b10.1021/ja054958bSearch in Google Scholar PubMed

[59] Liu, G., Böcking, T., & Gooding, J. J. (2007a). Diazonium salts: Stable monolayers on gold electrodes for sensing applications. Journal of Electroanalytical Chemistry, 600, 335–344. DOI: 10.1016/j.jelechem.2006.09.012. http://dx.doi.org/10.1016/j.jelechem.2006.09.01210.1016/j.jelechem.2006.09.012Search in Google Scholar

[60] Liu, G., Luais, E., & Gooding, J. J. (2011). The fabrication of stable gold nanoparticle-modified interfaces for electrochemistry. Langmuir, 27, 4176–4183. DOI: 10.1021/la104373v. http://dx.doi.org/10.1021/la104373v10.1021/la104373vSearch in Google Scholar PubMed

[61] Liu, J., Rodriguez i Zubiri, M., Vigolo, B., Dossot, M., Humbert, B., Fort, Y., & McRae, E. (2007b). Microwave-assisted functionalization of single-wall carbon nanotubes through diazonium. Journal of Nanoscience and Nanotechnology, 7, 3519–3523. DOI: 10.1166/jnn.2007.819. http://dx.doi.org/10.1166/jnn.2007.81910.1166/jnn.2007.819Search in Google Scholar PubMed

[62] Liu, T. Q., Casado-Portilla, R., Belmont, J., & Matyjaszewski, K. (2005). ATRP of butyl acrylates from functionalized carbon black surfaces. Journal of Polymer Science A: Polymer Chemistry, 43, 4695–4709. DOI: 10.1002/pola.20931. http://dx.doi.org/10.1002/pola.2093110.1002/pola.20931Search in Google Scholar

[63] Liu, T., Jia, S., Kowalewski, T., & Matyjaszewski, K. (2003). Grafting poly(n-butyl acrylate) from a functionalized carbon black surface by atom transfer radical polymerization. Langmuir, 19, 6342–6345. DOI: 10.1021/la034219d. http://dx.doi.org/10.1021/la034219d10.1021/la034219dSearch in Google Scholar

[64] Liu, T., Jia, S., Kowalewski, T., & Matyjaszewski, K. (2006). Water-dispersible carbon black nanocomposites prepared by surface-initiated atom transfer radical polymerization in protic media. Macromolecules, 39, 548–556. DOI: 10.1021/ma 051659y. http://dx.doi.org/10.1021/ma051659ySearch in Google Scholar

[65] Love, J. C., Estroff, L. A., Kriebel, J. K., Nuzzo, R. G., & Whitesides, G. M. (2005). Self-assembled monolayers of thiolates on metals as a form of nanotechnology. Chemical Reviews, 105, 1103–1170. DOI: 10.1021/cr0300789. http://dx.doi.org/10.1021/cr030078910.1021/cr0300789Search in Google Scholar PubMed

[66] Mahouche Chergui, S., Abbas, N., Matrab, T., Turmine, M., Bon Nguyen, E., Losno, R., Pinson, J., & Chehimi, M. M. (2010a). Uptake of copper ions by carbon fiber/polymer hybrids prepared by tandem diazonium salt chemistry and in situ atom transfer radical polymerization. Carbon, 48, 2106–2111. DOI: 10.1016/j.carbon.2010.01.050. http://dx.doi.org/10.1016/j.carbon.2010.01.05010.1016/j.carbon.2010.01.050Search in Google Scholar

[67] Mahouche, S., Mekni, N., Abbassi, L., Lang, P., Perruchot, C., Jouini, M., Mammeri, F., Turmine, M., Ben Romdhane, H., & Chehimi, M. M. (2009). Tandem diazonium salt electroreduction and click chemistry as a novel, efficient route for grafting macromolecules to gold surface. Surface Science, 603, 3205–3211. DOI: 10.1016/j.susc.2009.09.004. http://dx.doi.org/10.1016/j.susc.2009.09.00410.1016/j.susc.2009.09.004Search in Google Scholar

[68] Mahouche-Chergui, S., Gam-Derouich, S., Mangeney, C., & Chehimi, M. M. (2011). Aryl diazonium salts: a new class of coupling agents for bonding polymers, biomacromolecules and nanoparticles to surfaces. Chemical Society Reviews, 40, 4143–4166. DOI: 10.1039/c0cs00179a. http://dx.doi.org/10.1039/c0cs00179a10.1039/c0cs00179aSearch in Google Scholar PubMed

[69] Mahouche-Chergui, S., Ledebt, A., Mammeri, F., Herbst, F., Carbonnier, B., Ben Romdhane, H., Delamar, M., & Chehimi, M. M. (2010b). Hairy carbon nanotube@nano-Pd heterostructures: Design, characterization, and application in Suzuki C-C coupling reaction. Langmuir, 26, 16115–16121. DOI: 10.1021/la102801d. http://dx.doi.org/10.1021/la102801d10.1021/la102801dSearch in Google Scholar PubMed

[70] Mangeney, C., Qin, Z., Dahoumane, S. A., Adenier, A., Herbst, F., Boudou, J. P., Pinson, J., & Chehimi, M. M. (2008). Electroless ultrasonic functionalization of diamond nanoparticles using aryl diazonium salts. Diamond & Related Materials, 17, 1881–1887. DOI: 10.1016/j.diamond.2008.04.003. http://dx.doi.org/10.1016/j.diamond.2008.04.00310.1016/j.diamond.2008.04.003Search in Google Scholar

[71] Marcoux, P. R., Hapiot, P., Batail, P., & Pinson, J. (2004). Electrochemical functionalization of nanotube films: growth of aryl chains on single-walled carbon nanotubes. New Journal of Chemistry, 28, 302–307. DOI: 10.1039/b309509f. http://dx.doi.org/10.1039/b309509f10.1039/b309509fSearch in Google Scholar

[72] Matrab, T., Chancolon, J., Mayne L’Hermite, M., Rouzaud, J. N., Deniau, G., Boudou, J. P., Chehimi, M. M., & Delamar, M. (2006a). Atom transfer radical polymerization (ATRP) initiated by aryl diazonium salts: a new route for surface modification of multiwalled carbon nanotubes by tethered polymer chains. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 287, 217–221. DOI: 10.1016/j.colsurfa.2006.05.028. http://dx.doi.org/10.1016/j.colsurfa.2006.05.02810.1016/j.colsurfa.2006.05.028Search in Google Scholar

[73] Matrab, T., Chehimi, M. M., Boudou, J. P., Benedic, F., Wang, J., Naguib, N. N., & Carlisle, J. A. (2006b). Surface functionalization of ultrananocrystalline diamond using atom transfer radical polymerization (ATRP) initiated by electro-grafted aryldiazonium salts. Diamond and Related Materials, 15, 639–644. DOI: 10.1016/j.diamond.2005.11.024. http://dx.doi.org/10.1016/j.diamond.2005.11.02410.1016/j.diamond.2005.11.024Search in Google Scholar

[74] Matrab, T., Chehimi, M. M., Perruchot, C., Adenier, A., Guillez, V., Save, M., Charleux, B., Cabet-Deliry, E., & Pinson, J. (2005). Novel approach for metallic surface-initiated atom transfer radical polymerization using electrografted initiators based on aryl diazonium salts. Langmuir, 21, 4686–4694. DOI: 10.1021/la046912m. http://dx.doi.org/10.1021/la046912m10.1021/la046912mSearch in Google Scholar PubMed

[75] Matrab, T., Chehimi, M. M., Pinson, J., Slomkowski, S., & Basinska, T. (2006c). Growth of polymer brushes by atom transfer radical polymerization on glassy carbon modified by electro-grafted initiators based on aryl diazonium salts. Surface and Interface Analysis, 38, 565–568. DOI: 10.1002/sia.2194. http://dx.doi.org/10.1002/sia.219410.1002/sia.2194Search in Google Scholar

[76] Matrab, T., Hauquier, F., Combellas, C., & Kanoufi, F. (2010). Scanning electron microscopy investigation of molecular transport and reactivity within polymer brushes. ChemPhys Chem: A European Journal of Chemical Physics and Physical Chemistry, 11, 670–682. DOI: 10.1002/cphc.200900766. http://dx.doi.org/10.1002/cphc.20090076610.1002/cphc.200900766Search in Google Scholar PubMed

[77] Matrab, T., Nguyen, M. N., Mahouche, S., Lang, P., Badre, C., Turmine, M., Girard, G., Bai, J., & Chehimi, M. M. (2008). Aryl diazonium salts for carbon fibers surface-initiated atom transfer radical polymerization. The Journal of Adhesion, 84, 684–701. DOI: 10.1080/00218460802352645. http://dx.doi.org/10.1080/0021846080235264510.1080/00218460802352645Search in Google Scholar

[78] Matrab, T., Save, M., Charleux, B., Pinson, J., Cabet-Deliry, E., Adenier, A., Chehimi, M. M., & Delamar, M. (2007). Grafting densely-packed poly(n-butyl methacrylate) chains from an iron substrate by aryl diazonium surface-initiated ATRP: XPS monitoring. Surface Science, 601, 2357–2366. DOI: 10.1016/j.susc.2007.03.046. http://dx.doi.org/10.1016/j.susc.2007.03.04610.1016/j.susc.2007.03.046Search in Google Scholar

[79] Matyjaszewski, K., Miller, P. J., Shukla, N., Immaraporn, B., Gelman, A., Luokala, B. B., Siclovan, T. M., Kickelbick, G., Vallant, T., Hoffmann, H., & Pakula, T. (1999). Polymers at interfaces: using atom transfer radical polymerization in the controlled growth of homopolymers and block copolymers from silicon surfaces in the absence of untethered sacrificial initiator. Macromolecules, 32, 8716–8724. DOI: 10.1021/ma991146p. http://dx.doi.org/10.1021/ma991146p10.1021/ma991146pSearch in Google Scholar

[80] Mesnage, A., Abdel Magied, M., Simon, P., Herlin-Boime, N., Jégou, P., Deniau, G., & Palacin, S. (2011). Grafting polymers to titania nanoparticles by radical polymerization initiated by diazonium salt. Journal of Materials Science, 46, 6332–6338. DOI: 10.1007/s10853-011-5709-z. http://dx.doi.org/10.1007/s10853-011-5709-z10.1007/s10853-011-5709-zSearch in Google Scholar

[81] Mesnage, A., Esnouf, S., Jégou, P., Deniau, G., & Palacin, S. (2010). Understanding the redox-induced polymer grafting process: A dual surface-solution analysis. Chemistry of Materials, 22, 6229–6239. DOI: 10.1021/cm1014702. http://dx.doi.org/10.1021/cm101470210.1021/cm1014702Search in Google Scholar

[82] Mévellec, V., Roussel, S., Tessier, L., Chancolon, J., Mayne-L’Hermite, M., Deniau, G., Viel, P., & Palacin, S. (2007). Grafting polymers on surfaces: A new powerful and versatile diazonium salt-based one-step process in aqueous media. Chemistry of Materials, 19, 6323–6330. DOI: 10.1021/cm071 371i. http://dx.doi.org/10.1021/cm071371iSearch in Google Scholar

[83] Mirkhalaf, F., Mason, T. J., Morgan, D. J., & Saez, V. (2011). Frequency effects on the surface coverage of nitrophenyl films ultrasonically grafted onto indium tin oxide. Langmuir, 27, 1853–1858. DOI: 10.1021/la104402z. http://dx.doi.org/10.1021/la104402z10.1021/la104402zSearch in Google Scholar PubMed

[84] Moses, J. E., & Moorhouse, A. D. (2007). The growing applications of click chemistry. Chemical Society Reviews, 36, 1249–1262. DOI: 10.1039/b613014n. http://dx.doi.org/10.1039/b613014n10.1039/B613014NSearch in Google Scholar

[85] Mrabet, B., Mejbri, A., Mahouche, S., Gam-Derouich, S., Turmine, M., Mechouet, M., Lang, P., Bakala, H., Ladjimi, M., Bakhrouf, A., Tougaard, S., & Chehimi, M. M. (2011). Controlled adhesion of Salmonella Typhimurium to poly(oligoethylene glycol methacrylate) grafts. Surface and Interface Analysis, 43, 1436–1443. DOI: 10.1002/sia.3741. http://dx.doi.org/10.1002/sia.374110.1002/sia.3741Search in Google Scholar

[86] Nguyen, M. N., Matrab, T., Badre, C., Turmine, M., & Chehimi, M. M. (2008). Interfacial aspects of polymer brushes prepared on conductive substrates by aryl diazonium salt surface-initiated ATRP. Surface and Interface Analysis, 40, 412–417. DOI: 10.1002/sia.2687. http://dx.doi.org/10.1002/sia.268710.1002/sia.2687Search in Google Scholar

[87] Pan, Y., Tong, B., Shi, J., Zhao, W., Shen, J., Zhi, J., & Dong, Y. (2010). Fabrication, characterization, and optoelectronic properties of layer-by-layer films based on terpyridine-modified MWCNTs and ruthenium(III) ions. The Journal of Physical Chemistry C, 114, 8040–8047. DOI: 10.1021/jp909904t. http://dx.doi.org/10.1021/jp909904t10.1021/jp909904tSearch in Google Scholar

[88] Pandurangappa, M., Ramakrishnappa, T., & Compton, R. G. (2009). Functionalization of glassy carbon spheres by ball milling of aryl diazonium salts. Carbon, 47, 2186–2193. DOI: 10.1016/j.carbon.2009.03.068. http://dx.doi.org/10.1016/j.carbon.2009.03.06810.1016/j.carbon.2009.03.068Search in Google Scholar

[89] Petrov, P., Stassin, F., Pagnoulle, C., & Jérôme, R. (2003). Noncovalent functionalization of multi-walled carbon nanotubes by pyrene containing polymers. Chemical Communications, 2904–2905. DOI: 10.1039/b307751a. 10.1039/B307751ASearch in Google Scholar

[90] Pinson, J., & Podvorica, F. (2005). Attachment of organic layers to conductive or semiconductive surfaces by reduction of diazonium salts. Chemical Society Reviews, 34, 429–439. DOI: 10.1039/b406228k. http://dx.doi.org/10.1039/b406228k10.1039/b406228kSearch in Google Scholar PubMed

[91] Qin, S., Qin, D., Ford, W. T., Resasco, D. E., & Herrera, J. E. (2004). Polymer brushes on single-walled carbon nanotubes by atom transfer radical polymerization of n-butyl methacrylate. Journal of the American Chemical Society, 126, 170–176. DOI: 10.1021/ja037937v. http://dx.doi.org/10.1021/ja037937v10.1021/ja037937vSearch in Google Scholar PubMed

[92] Ratheesh Kumar, V. K., & Gopidas, K. R. (2010). Synthesis and characterization of gold-nanoparticle-cored dendrimers stabilized by metal-carbon bonds. Chemistry — An Asian Journal, 5, 887–896. DOI: 10.1002/asia.200900388. http://dx.doi.org/10.1002/asia.20090038810.1002/asia.200900388Search in Google Scholar PubMed

[93] Ratheesh Kumar, V. K., & Gopidas, K. R. (2011). Palladium nanoparticle-cored-G1-dendrimer stabilized by carbon-Pd bonds: synthesis, characterization and use as chemoselective, room temperature hydrogenation catalyst. Tetrahedron Letters, 52, 3102–3105. DOI: 10.1016/j.tetlet.2011.04.011. http://dx.doi.org/10.1016/j.tetlet.2011.04.01110.1016/j.tetlet.2011.04.011Search in Google Scholar

[94] Santos, L. M., Ghilane, J., Fave, C., Lacaze, P. C., Randriamahazaka, H., Abrantes, L. M., & Lacroix, J. C. (2008). Electrografting polyaniline on carbon through the electroreduction of diazonium salts and the electrochemical polymerization of aniline. The Journal of Physical Chemistry C, 112, 16103–16109. DOI: 10.1021/jp8042818. http://dx.doi.org/10.1021/jp804281810.1021/jp8042818Search in Google Scholar

[95] Selvaraj, V., & Alagar, M. (2007). Pt and Pt-Ru nanoparticles decorated polypyrrole/multiwalled carbon nanotubes and their catalytic activity towards methanol oxidation. Electrochemistry Communications, 9, 1145–1153. DOI: 10.1016/j.elecom.2007.01.011. http://dx.doi.org/10.1016/j.elecom.2007.01.01110.1016/j.elecom.2007.01.011Search in Google Scholar

[96] Shaulov, Y., Okner, R., Levi, Y., Tal, N., Gutkin, V., Mandler, D., & Domb, A. J. (2009). Poly(methyl methacrylate) grafting onto stainless steel surfaces: Application to drug-eluting stents. ACS Applied Materials & Interfaces, 1, 2519–2528. DOI: 10.1021/am900465t. http://dx.doi.org/10.1021/am900465t10.1021/am900465tSearch in Google Scholar PubMed

[97] Shewchuk, D. M., & McDermott, M. T. (2009). Comparison of diazonium salt derived and thiol derived nitrobenzene layers on gold. Langmuir, 25, 4556–4563. DOI: 10.1021/la8040083. http://dx.doi.org/10.1021/la804008310.1021/la8040083Search in Google Scholar PubMed

[98] Simionescu, C. I., & Dimitriu, S. (1972). Grafting of cellulose and derivatives by means of diazonium salts. Journal of Polymer Science Part C: Polymer Symposia, 37, 187–203. DOI: 10.1002/polc.5070370111. http://dx.doi.org/10.1002/polc.507037011110.1002/polc.5070370111Search in Google Scholar

[99] Simionescu, C., Popa, M. I., & Dimitriu, S. (1987). Bioactive polymers XXX. Immobilization of invertase on the diazonium salt of 4-aminobenzoylcellulose. Biotechnology and Bioengineering, 29, 361–365. DOI: 10.1002/bit.260290312. http://dx.doi.org/10.1002/bit.26029031210.1002/bit.260290312Search in Google Scholar PubMed

[100] Steenackers, M., Küller, A., Stoycheva, S., Grunze, M., & Jordan, R. (2009). Structured and gradient polymer brushes from biphenylthiol self-assembled monolayers by self-initiated photografting and photopolymerization (SIPGP). Langmuir, 25, 2225–2231. DOI: 10.1021/la803386c. http://dx.doi.org/10.1021/la803386c10.1021/la803386cSearch in Google Scholar PubMed

[101] Stockhausen, V., Ghilane, J., Martin, P., Trippé-Allard, G., Randriamahazaka, H., & Lacroix, J. C. (2009). Grafting oligothiophenes on surfaces by diazonium electroreduction: A step toward ultrathin junction with well-defined metal/oligomer interface. Journal of the American Chemical Society, 131, 14920–14927. DOI: 10.1021/ja9047009. http://dx.doi.org/10.1021/ja904700910.1021/ja9047009Search in Google Scholar PubMed

[102] Sun, G., Hovestädt, M., Zhang, X., Hinrichs, K., Rosu, D. M., Lauermann, I., Zielke, C., Vollmer, A., Löchel, H., Ay, B., Holzhütter, H. G., Schade, U., Esser, N., Volkmer, R., & Rappich, J. (2011). Infrared spectroscopic ellipsometry (IRSE) and X-ray photoelectron spectroscopy (XPS) monitoring the preparation of maleimide-functionalized surfaces: from Au towards Si (111). Surface and Interface Analysis, 43, 1203–1210. DOI: 10.1002/sia.3699. http://dx.doi.org/10.1002/sia.369910.1002/sia.3699Search in Google Scholar

[103] Suryanarayanan, V., Wu, C. T., & Ho, K. C. (2010). Molecularly imprinted electrochemical sensors. Electroanalysis, 22, 1795–1811. DOI: 10.1002/elan.200900616. http://dx.doi.org/10.1002/elan.20090061610.1002/elan.200900616Search in Google Scholar

[104] Tasdelen, M. A., Moszner, N., & Yagci, Y. (2009). The use of poly(ethylene oxide) as hydrogen donor in type II photoinitiated free radical polymerization. Polymer Bulletin, 63, 173–183. DOI: 10.1007/s00289-009-0079-2. http://dx.doi.org/10.1007/s00289-009-0079-210.1007/s00289-009-0079-2Search in Google Scholar

[105] Tessier, L., Deniau, G., Charleux, B., & Palacin, S. (2009). Surface electroinitiated emulsion polymerization (SEEP): A mechanistic approach. Chemistry of Materials, 21, 4261–4274. DOI: 10.1021/cm901430t. http://dx.doi.org/10.1021/cm901430t10.1021/cm901430tSearch in Google Scholar

[106] Toupin, M., & Bélanger, D. (2007). Thermal stability study of aryl modified carbon black by in situ generated diazonium salt. The Journal of Physical Chemistry C, 111, 5394–5401. DOI: 10.1021/jp066868e. http://dx.doi.org/10.1021/jp066868e10.1021/jp066868eSearch in Google Scholar

[107] Tour, J. M., Hudson, J. L., Krishnamoorti, R., Yurelki, K., & Mitchell, C. A. (2005). Patent No. WO05030858A3. New York, NY, USA: World Intellectual Property Organization. Search in Google Scholar

[108] Walter, P. (2003). Silane and other adhesion promoters in adhesive technology. In A. Pizzi, & K. L. Mittal (Eds.), Handbook of adhesive technology (2nd ed., pp. 205–221). New York, NY, USA: Marcel Dekker. Search in Google Scholar

[109] Wang, G. J., Huang, S. Z., Wang, Y., Liu, L., Qiu, J., & Li, Y. (2007). Synthesis of water-soluble single-walled carbon nanotubes by RAFT polymerization. Polymer, 48, 728–733. DOI: 10.1016/j.polymer.2006.12.024. http://dx.doi.org/10.1016/j.polymer.2006.12.02410.1016/j.polymer.2006.12.024Search in Google Scholar

[110] Wang, J., & Carlisle, J. A. (2006). Covalent immobilization of glucose oxidase on conducting ultrananocrystalline diamond thin films. Diamond and Related Materials, 15, 279–284. DOI: 10.1016/j.diamond.2005.09.017. http://dx.doi.org/10.1016/j.diamond.2005.09.01710.1016/j.diamond.2005.09.017Search in Google Scholar

[111] Wu, W., Tsarevsky, N. V., Hudson, J. L., Tour, J. M., Matyjaszewski, K., & Kowalewski, T. (2007). “Hairy” single-walled carbon nanotubes prepared by atom transfer radical polymerization. Small, 3, 1803–1810. DOI: 10.1002/smll.200600688. http://dx.doi.org/10.1002/smll.20060068810.1002/smll.200600688Search in Google Scholar PubMed

[112] Yagci, Y., Jockusch, S., & Turro, N. J. (2010). Photoinitiated polymerization: Advances, challenges, and opportunities. Macromolecules, 43, 6245–6260. DOI: 10.1021/ma1007545. http://dx.doi.org/10.1021/ma100754510.1021/ma1007545Search in Google Scholar

[113] Zhang, Y., Xue, Y., & Yu, M. (2011). Hydrothermal synthesis of core-shell structured PS@GdPO4:Tb3+/Ce3+ spherical particles and their luminescence properties. Chemical Papers, 65, 29–35. DOI: 10.2478/s11696-010-0088-5. http://dx.doi.org/10.2478/s11696-010-0088-510.2478/s11696-010-0088-5Search in Google Scholar

Published Online: 2012-4-5
Published in Print: 2012-5-1

© 2012 Institute of Chemistry, Slovak Academy of Sciences

Downloaded on 27.11.2025 from https://www.degruyterbrill.com/document/doi/10.2478/s11696-012-0135-5/html
Scroll to top button