Abstract
Ni-W alloy coatings were deposited by applying current pulses with different pulse parameters at 60°C onto mild steel substrates from aqueous electrolytes with different tungstate concentration. Morphology and composition of the alloys were analyzed by SEM and EDX, respectively. XRD was used to determine metallic phases. Scanning electron micrographs revealed that deposition parameters had a strong effect on the morphology of the coatings. Increasing the duty cycle or decreasing the off time led to a compact morphology. Corrosion properties of the coatings were investigated by potentiodynamic polarization in a chloride medium. It was found that compact morphology of the deposits and high content of tungsten in the coating contribute to satisfactory corrosion results of Ni-W alloy coatings under the conditions studied.
[1] Alimadadi, H., Ahmadi, M., Aliofkhazraei, M., & Younesi, S. R. (2009). Corrosion properties of electrodeposited nanocrystalline and amorphous patterened Ni-W alloy. Materials & Design, 30, 1356–1361. DOI: 10.1016/j.matdes.2008.06.036. http://dx.doi.org/10.1016/j.matdes.2008.06.03610.1016/j.matdes.2008.06.036Search in Google Scholar
[2] Atanassov, N., Gencheva, K., & Bratoeva, M. (1997). Properties of nickel-tungsten alloys electrodeposited from sulphamate electrolyte. Plating and Surface Finishing, 84, 67–71. Search in Google Scholar
[3] Bard, A. J., & Faulkner, L. R. (2001). Electrochemical methods (Vol. II). New York, NY, USA: Wiley. Search in Google Scholar
[4] Brenner, A. (1963). Electrodeposition of alloys (Vol. II). New York, NY, USA: Academic Press. Search in Google Scholar
[5] de Lima-Neto, P., Correia, A. N., Santana, R. A. C., Colares, R. P., Barros, E. B., Casciano, P. N. S., & Vaz, G. L. (2010). Morphological, structural, microhardness and electrochemical characterizations of electrodeposited Cr and Ni-W coatings. Electrochimica Acta, 55, 2078–2086. DOI: 10.1016/j.electacta.2009.11.037. http://dx.doi.org/10.1016/j.electacta.2009.11.03710.1016/j.electacta.2009.11.037Search in Google Scholar
[6] Donten, M., & Stojek, Z. (1996). Pulse electroplating of rich-in-tungsten thin layers of amorphous Co-W alloys. Journal of Applied Electrochemistry, 26, 665–672. DOI: 10.1007/bf00253466. http://dx.doi.org/10.1007/BF0025346610.1007/BF00253466Search in Google Scholar
[7] Eliaz, N., Sridhar, T. M., & Gileadi, E. (2005). Synthesis and characterization of nickel tungsten alloys by electrodeposition. Electrochimica Acta, 50, 2893–2904. DOI: 10.1016/j.electacta.2004.11.038. http://dx.doi.org/10.1016/j.electacta.2004.11.03810.1016/j.electacta.2004.11.038Search in Google Scholar
[8] Farzaneh, M. A., Zamanzad-Ghavidel, M. R., Raeissi, K., Golozar, M. A., Saatchi, A., & Kabi, S. (2011). Effects of Co and W alloying elements on the electrodeposition aspects and properties of nanocrystalline Ni alloy coatings. Applied Surface Science, 257, 5919–5926. DOI: 10.1016/j.apsusc.2011.02.008. http://dx.doi.org/10.1016/j.apsusc.2011.02.00810.1016/j.apsusc.2011.02.008Search in Google Scholar
[9] Gáliková, Z., Chovancová, M., & Danielik, V. (2006). Properties of Ni-W alloy coatings on steel substrate. Chemical Papers, 60, 353–359. DOI: 10.2478/s11696-006-0064-2. http://dx.doi.org/10.2478/s11696-006-0064-210.2478/s11696-006-0064-2Search in Google Scholar
[10] Hui, W. H., Liu, J. J., & Chaug, Y. S. (1994). A study of the corrosion resistance of brush plated Ni-Fe-W-P films. Surface & Coatings Technology, 68, 546–551. DOI: 10.1016/0257-8972(94)90215-1. http://dx.doi.org/10.1016/0257-8972(94)90215-110.1016/0257-8972(94)90215-1Search in Google Scholar
[11] Joska, L., & Novák, P. (2001). Polarization resistance. In Proceedings of the 2nd International Conference Corrosion and Influence on Steel Constructions, March 12–13, 2001 (pp. 61–66). Brno, Czech Republic. Search in Google Scholar
[12] Juškènas, R., Valsiunas, I., Pakštas, V., & Giraitis, W. (2009). On the state of W in electrodeposited Ni-W alloys. Electrochimica Acta, 54, 2616–2620. DOI: 10.1016/j.electacta.2008.10.060. http://dx.doi.org/10.1016/j.electacta.2008.10.06010.1016/j.electacta.2008.10.060Search in Google Scholar
[13] Landolt, D., & Marlot, A. (2003). Microstructure and composition of pulse-plated metals and alloys. Surface and Coatings Technology, 169–170, 8–13. DOI: 10.1016/s0257-8972(03)00042-2. http://dx.doi.org/10.1016/S0257-8972(03)00042-210.1016/S0257-8972(03)00042-2Search in Google Scholar
[14] Lillard, R. S., Kanner, G. S., & Daemen, L. L. (2002). The influence of a mixed radiation environment on the properties of the passive film on tungsten. Electrochimica Acta, 47, 2473–2482. DOI: 10.1016/s0013-4686(02)00107-x. http://dx.doi.org/10.1016/S0013-4686(02)00107-X10.1016/S0013-4686(02)00107-XSearch in Google Scholar
[15] Mizushima, I., Tang, P. T., Hansen, H. N., & Somers, M. A.J. (2005). Development of a new electroplating process for Ni-W alloy deposits. Electrochimica Acta 51, 888–896. DOI: 10.1016/j.electacta.2005.04.050. http://dx.doi.org/10.1016/j.electacta.2005.04.05010.1016/j.electacta.2005.04.050Search in Google Scholar
[16] Oblonsky, L. J., & Devine, T.M. (1995). A surface enhanced Raman spectroscopic study of the passive films formed in borate buffer on iron, nickel, chromium and stainless steel. Corrosion Science, 37, 17–41. DOI: 10.1016/0010-938x(94)00102-c. http://dx.doi.org/10.1016/0010-938X(94)00102-C10.1016/0010-938X(94)00102-CSearch in Google Scholar
[17] Obradović, M. D., Bošnjakov, G. Ž., Stevanović, R. M., Maksimović, M. D., & Despić, A. R. (2006). Pulse and direct current plating of Ni-W alloys from ammonia-citrate electrolyte. Surface and Coatings Technology, 200, 4201–4207. DOI: 10.1016/j.surfcoat.2004.12.013. http://dx.doi.org/10.1016/j.surfcoat.2004.12.01310.1016/j.surfcoat.2004.12.013Search in Google Scholar
[18] Puippe, J. C., & Leaman, F. (1986). Theory and practice of pulse plating. Orlando, FL, USA: American Electroplaters and Surface Finisher Society. Search in Google Scholar
[19] Schacham-Diamand, Y., & Lopatin, S. (1999). Integrated electroless metalization for ULSI. Electrochimica Acta, 44, 3639–3649. DOI: 10.1016/s0013-4686(99)00067-5. http://dx.doi.org/10.1016/S0013-4686(99)00067-510.1016/S0013-4686(99)00067-5Search in Google Scholar
[20] Schultze, J. W., & Bresel, A. (2001). Principles of electrochemical micro- and nano-system technologies. Electrochimica Acta, 47, 3–21. DOI: 10.1016/s0013-4686(01)00584-9. http://dx.doi.org/10.1016/S0013-4686(01)00584-910.1016/S0013-4686(01)00584-9Search in Google Scholar
[21] Slavcheva, E., Mokwa, W., & Schnakenberg, U. (2005). Electrodeposition and properties of NiW films for MEMS application. Electrochimica Acta, 50, 5573–5580. DOI: 10.1016/j.electacta.2005.03.059. http://dx.doi.org/10.1016/j.electacta.2005.03.05910.1016/j.electacta.2005.03.059Search in Google Scholar
[22] Sriraman, K. R., Ganesh Sundara Raman, S., & Seshdari, S. K. (2007). Corrosion behaviour of electrodeposited nanocrystalline Ni-Wand Ni-Fe-Walloys. Materials Science and En gineering: A, 460–461, 39–45. DOI: 10.1016/j.msea.2007.02. 055. http://dx.doi.org/10.1016/j.msea.2007.02.055Search in Google Scholar
[23] Tury, B., Lakatos-Varsányi, M., & Roy, S. (2006). Ni-Co alloys plated by pulse currents. Surface and Coatings Technology, 200, 6713–6717. DOI: 10.1016/j.surfcoat.2005.10.008. http://dx.doi.org/10.1016/j.surfcoat.2005.10.00810.1016/j.surfcoat.2005.10.008Search in Google Scholar
[24] Yamasaki, T., Tomohira, R., Ogino, Y., Schlossmacher, P., & Ehrlich, K. (2000). Formation of ductile amorphous & nanocrystalline Ni-W alloys by electrodeposition. Plating and Surface Finishing, 87, 148–152. Search in Google Scholar
[25] Younes, O., & Gileadi, E. (2002). Electroplating of Ni/Walloys. Journal of The Electrochemical Society, 149, C100–C111. DOI: 10.1149/1.1433750. http://dx.doi.org/10.1149/1.143375010.1149/1.1433750Search in Google Scholar
[26] Younes-Metzler, O., Zhu, L., & Gileadi, E. (2003). The anomalous codeposition of tungsten in the presence of nickel. Electrochimica Acta, 48, 2551–2562. DOI: 10.1016/s0013-4686(03)00297-4. http://dx.doi.org/10.1016/S0013-4686(03)00297-410.1016/S0013-4686(03)00297-4Search in Google Scholar
© 2011 Institute of Chemistry, Slovak Academy of Sciences
Articles in the same Issue
- Ultrathin organic, inorganic, hybrid, and living cell coatings — Topical Issue
- Functional polymer thin films designed for antifouling materials and biosensors
- In-situ polymerized molecularly imprinted polymeric thin films used as sensing layers in surface plasmon resonance sensors: Mini-review focused on 2010–2011
- Design of polyglycidol-containing microspheres for biomedical applications
- On the interfacial chemistry of aryl diazonium compounds in polymer science
- Polypyrrole coating of inorganic and organic materials by chemical oxidative polymerisation
- Spectroscopy of thin polyaniline films deposited during chemical oxidation of aniline
- Ultrathin functional films of titanium(IV) oxide
- Sol-gel thin films with anti-reflective and self-cleaning properties
- Nanostructured electrocatalysts immobilised on electrode surfaces and organic film templates
- Influence of adsorbed oxygen on charge transport and chlorine gas-sensing characteristics of thin cobalt phthalocyanine films
- Ni-W alloy coatings deposited from a citrate electrolyte
- Role of reactive species in processing materials at laboratory temperature by spray plasma devices
- Electrodeposition of hafnium and hafnium-based coatings in molten salts
- Role of interfacial chemistry on the rheology and thermo-mechanical properties of clay-polymer nanocomposites for building applications
- Endothelial cell adhesion on polyelectrolyte multilayer films functionalised with fibronectin and collagen
Articles in the same Issue
- Ultrathin organic, inorganic, hybrid, and living cell coatings — Topical Issue
- Functional polymer thin films designed for antifouling materials and biosensors
- In-situ polymerized molecularly imprinted polymeric thin films used as sensing layers in surface plasmon resonance sensors: Mini-review focused on 2010–2011
- Design of polyglycidol-containing microspheres for biomedical applications
- On the interfacial chemistry of aryl diazonium compounds in polymer science
- Polypyrrole coating of inorganic and organic materials by chemical oxidative polymerisation
- Spectroscopy of thin polyaniline films deposited during chemical oxidation of aniline
- Ultrathin functional films of titanium(IV) oxide
- Sol-gel thin films with anti-reflective and self-cleaning properties
- Nanostructured electrocatalysts immobilised on electrode surfaces and organic film templates
- Influence of adsorbed oxygen on charge transport and chlorine gas-sensing characteristics of thin cobalt phthalocyanine films
- Ni-W alloy coatings deposited from a citrate electrolyte
- Role of reactive species in processing materials at laboratory temperature by spray plasma devices
- Electrodeposition of hafnium and hafnium-based coatings in molten salts
- Role of interfacial chemistry on the rheology and thermo-mechanical properties of clay-polymer nanocomposites for building applications
- Endothelial cell adhesion on polyelectrolyte multilayer films functionalised with fibronectin and collagen