Home Structure elucidation of an aspidofractinine-type monoterpene indole alkaloid from Melodinus reticulatus
Article
Licensed
Unlicensed Requires Authentication

Structure elucidation of an aspidofractinine-type monoterpene indole alkaloid from Melodinus reticulatus

  • Adrien Jagora , Sarah Szwarc , Marc Litaudon ORCID logo , Vincent Dumontet , Jean-François Gallard , Mehdi A. Beniddir ORCID logo EMAIL logo and Pierre Le Pogam ORCID logo EMAIL logo
Published/Copyright: February 17, 2023
Become an author with De Gruyter Brill

Abstract

The structure and complete NMR assignments of aspidoreticulofractine, an aspidofractinine N-oxide, are reported. Its structure was elucidated based on a combination of spectroscopic techniques including 1D and 2D NMR, high-resolution mass spectrometry, and electronic circular dichroism.


Corresponding authors: Mehdi A. Beniddir and Pierre Le Pogam, Équipe “Chimie des substances naturelles” BioCIS, CNRS, Université Paris-Saclay, 17, avenue des Sciences, 91400, Orsay, France, E-mail: (M. A. Beniddir), (P. Le Pogam)

Funding source: Agence Nationale de la Recherche

Award Identifier / Grant number: ANR-20-CE43-001

Acknowledgements

The authors are indebted to the French Agence Nationale de la Recherche for funding this study (Grant ANR-20-CE43-001). The authors are very grateful to the North Province of New Caledonia, which facilitated our field investigation. Leo Goehrs (Alionis) is gratefully acknowledged for the donation of the computing hardware.

  1. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: This work was supported by The Agence Nationale de la Recherche (ANR-20-CE43-001).

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

Appendix

HRESIMS, 1D and 2D NMR spectra of compound 1, and Cartesian coordinates of the two considered N-oxide epimers are available as supplementary material.

References

1. Le Men, J, Taylor, WI. A uniform numbering system for indole alkaloids. Experientia 1965;21:508–10. https://doi.org/10.1007/bf02138961.Search in Google Scholar

2. Lu, Y, Khoo, TJ, Wiart, C. The genus Melodinus (apocynaceae): chemical and pharmacological perspectives. Pharmacol Pharm 2014;5:1–11.10.4236/pp.2014.55064Search in Google Scholar

3. Baassou, S, Mehri, HM, Rabaron, A, Plat, M. (+) melonine and NB-oxy melonine, a new indoline skeleton. Tetrahedron Lett 1983;24:761–2. https://doi.org/10.1016/s0040-4039(00)81519-1.Search in Google Scholar

4. Kouamé, T, Bernadat, G, Turpin, V, Litaudon, M, Okpekon, AT, Gallard, JF, et al.. Structure reassignment of melonine and quantum-chemical calculations-based assessment of biosynthetic scenarios leading to its revised and original structures. Org Lett 2021;23:5964–8. https://doi.org/10.1021/acs.orglett.1c02055.Search in Google Scholar PubMed

5. Zhang, Y, Ding, X, Shao, S, Guo, LL, Zhao, Q, Hao, XJ, et al.. Melocochines A and B, Two alkaloids from the fruits of Melodinus cochinchinensis. Org Lett 2019;21:9272–5. https://doi.org/10.1021/acs.orglett.9b03785.Search in Google Scholar PubMed

6. Wu, J, Zhao, SM, Shi, BB, Bao, MF, Schinnerl, J, Cai, XH. Cage-monoterpenoid quinoline alkaloids with neurite growth promoting effects from the fruits of Melodinus yunnanensis. Org Lett 2020;22:7676–80. https://doi.org/10.1021/acs.orglett.0c02871.Search in Google Scholar PubMed

7. Mehri, H, Rochat, C, Baassou, S, Sevenet, T, Plat, M. Plante de Nouvelle-Calédonie* Alcaloïdes de Melodinus reticulatus. Planta Med 1983;48:72–6. https://doi.org/10.1055/s-2007-969889.Search in Google Scholar PubMed

8. DNP. Available from: http://dnp.chemnetbase.com/ (Accessed 11 Nov 2022).Search in Google Scholar

9. Cai, XH, Li, Y, Liu, YP, Li, XN, Bao, MF, Luo, XD. Alkaloids from Melodinus yunnanensis. Phytochemistry 2012;83:116–24. https://doi.org/10.1016/j.phytochem.2012.06.013.Search in Google Scholar PubMed

10. Subramaniam, G, Hiraku, O, Hayashi, M, Koyano, T, Komiyama, K, Kam, TS. Biologically active aspidofractinine, rhazinilam, akuammiline, and vincorine alkaloids from Kopsia. J Nat Prod 2007;70:1783–9. https://doi.org/10.1021/np0703747.Search in Google Scholar PubMed

11. Li, Y, Yang, J, Zhou, X, Liang, X, Fu, Q. Fusiformines A and B: New indole alkaloids from melodinus fusiformis. Z fur Naturforsch - B J Chem Sci 2016;71:193–5. https://doi.org/10.1515/znb-2015-0052.Search in Google Scholar

12. Kitajima, M, Anbe, M, Kogure, N, Wongseripipatana, S, Takayama, H. Indole alkaloids from Kopsia jasminiflora. Tetrahedron 2014;70:9099–106. https://doi.org/10.1016/j.tet.2014.10.002.Search in Google Scholar

13. Hanwell, MD, Curtis, DE, LonieVandermeersch, DCT, Zurek, E, Hutchison, GR. Avogadro: an advanced semantic chemical editor, visualization, and analysis platform. J Cheminf 2012;4:1–17. https://doi.org/10.1186/1758-2946-4-17.Search in Google Scholar PubMed PubMed Central

14. Kam, TS, Yoganathan, K, Chuah, CH, Kopsidine, A, Kopsidine, B. Two novel indole alkaloids from a Malaysian Kopsia. Tetrahedron Lett 1993;34:1819–22. https://doi.org/10.1016/s0040-4039(00)60788-8.Search in Google Scholar

15. Kam, TS, Yoganathan, K. Three aspidofractinine-type alkaloids from Kopsia teoi. Phytochemistry 1996;42:539–41. https://doi.org/10.1016/0031-9422(95)00920-5.Search in Google Scholar

16. Kam, TS, Choo, YM. Kopsifolines A, B, and C, indole alkaloids with a novel hexacyclic carbon skeleton from Kopsia. Tetrahedron Lett 2003;44:1317–9. https://doi.org/10.1016/s0040-4039(02)02616-3.Search in Google Scholar

17. Lim, KH, Hiraku, O, Komiyama, K, Koyano, T, Hayashi, M, Kam, TS. Biologically active Indole alkaloids from Kopsia arborea. J Nat Prod 2007;70:1302–7. https://doi.org/10.1021/np0702234.Search in Google Scholar PubMed

18. Zhou, J, Fang, ZY, Zhou, P, Wang, YY, Fang, L, Zhang, H. New monoterpenoid Indole alkaloids from Melodinus suaveolens. Phytochemistry Lett 2019;33:22–5. https://doi.org/10.1016/j.phytol.2019.06.010.Search in Google Scholar

19. Klein-Júnior, LC, Cretton, S, Allard, PM, Genta-Jouve, G, Passos, CS, Salton, J, et al.. Targeted isolation of Monoterpene Indole alkaloids from Palicourea sessilis. J Nat Prod 2017;80:3032. https://doi.org/10.1021/acs.jnatprod.7b00681.Search in Google Scholar PubMed

20. Novitskiy, IM, Kutateladze, AG. DU8ML: Machine learning-augmented density functional theory nuclear magnetic resonance computations for high-throughput in silico solution structure validation and revision of complex alkaloids. J Org Chem 2022;87:4818–28. https://doi.org/10.1021/acs.joc.2c00169.Search in Google Scholar PubMed

21. Smith, SG, Goodman, JM. Assigning stereochemistry to single diastereoisomers by GIAO NMR calculation: the DP4 probability. J Am Chem Soc 2010;132:12946–59. https://doi.org/10.1021/ja105035r.Search in Google Scholar PubMed

22. Chong, KW, Yeap, JSY, Lim, SH, Weber, JFF, Low, YY, Kam, TS. Biosynthetic enantiodivergence in the eburnane alkaloids from Kopsia. J Nat Prod 2017;80:3014–24. https://doi.org/10.1021/acs.jnatprod.7b00621.Search in Google Scholar PubMed

23. Zèches, M, Lounkokobi, J, Richard, B, Plat, M, Le Men-Olivier, L, Sevenet, T, et al.. Alkaloids of Melodinus guillauminii. Phytochemistry 1984;23:171–4. https://doi.org/10.1016/0031-9422(84)83101-5.Search in Google Scholar

24. Batchily, F, Baassou, S, Mehri, H, Plat, M, Sevenet, T, Pusset, J. Plants from New Caledonia. Alkaloids from Melodinus insulae-pinorum boiteau. Ann Pharm Fr 1985;43:359–64.Search in Google Scholar

25. Hohenberg, P, Kohn, W. Inhomogeneous electron gas. Phys Rev 1964;136:B864–71. https://doi.org/10.1103/physrev.136.b864.Search in Google Scholar

26. Kohn, W, Sham, LJ. Self-consistent equations including exchange and correlation effects. Phys Rev 1965;140:A1133–8. https://doi.org/10.1103/physrev.140.a1133.Search in Google Scholar

27. Lee, C, Yang, W, Parr, RG. Development of the colle-salvetti correlation-energy formula into a functional of the electron density. Phys Rev B 1988;37:785–9. https://doi.org/10.1103/physrevb.37.785.Search in Google Scholar PubMed

28. Becke, AD. Becke’s three parameter hybrid method using the LYP correlation functional. J Chem Phys 1993;98:5648–52. https://doi.org/10.1063/1.464913.Search in Google Scholar

29. Hehre, WJ, Radom, L, Schleyer, PVR, Pople, JA. Ab Initio molecular orbital theory. New York: Wiley; 1986.Search in Google Scholar

30. Frisch, MJ, Trucks, HB, Schlegel, GW, Scuseria, GE, Robb, MA, Cheeseman, JR, et al.. Gaussian 16 revision B.01. Wallingford CT: Gaussian Inc.; 2016.Search in Google Scholar

31. Ditchfield, R. Self-consistent perturbation theory of diamagnetism: I. A gauge-invariant LCAO method for NMR chemical shifts. Mol Phys 1974;27:789–807. https://doi.org/10.1080/00268977400100711.Search in Google Scholar

32. Wolinski, K, Hinton, JF, Pulay, P. Efficient implementation of the gauge-independent atomic orbital method for NMR chemical shift calculations. J Am Chem Soc 1990;112:8251–60. https://doi.org/10.1021/ja00179a005.Search in Google Scholar

33. Ermanis, K, Parkes, KE, Agback, T, Goodman, JM. Expanding DP4: application to drug compounds and automation. Org Biomol Chem 2016;14:3943–9. https://doi.org/10.1039/c6ob00015k.Search in Google Scholar PubMed


Supplementary Material

This article contains supplementary material (https://doi.org/10.1515/znc-2022-0234).


Received: 2022-11-24
Accepted: 2023-01-26
Published Online: 2023-02-17
Published in Print: 2023-07-26

© 2023 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 3.11.2025 from https://www.degruyterbrill.com/document/doi/10.1515/znc-2022-0234/html
Scroll to top button