Structure elucidation of an aspidofractinine-type monoterpene indole alkaloid from Melodinus reticulatus
-
Adrien Jagora
, Sarah Szwarc , Marc Litaudon, Vincent Dumontet
, Jean-François Gallard , Mehdi A. Beniddirand Pierre Le Pogam
Abstract
The structure and complete NMR assignments of aspidoreticulofractine, an aspidofractinine N-oxide, are reported. Its structure was elucidated based on a combination of spectroscopic techniques including 1D and 2D NMR, high-resolution mass spectrometry, and electronic circular dichroism.
Funding source: Agence Nationale de la Recherche
Award Identifier / Grant number: ANR-20-CE43-001
Acknowledgements
The authors are indebted to the French Agence Nationale de la Recherche for funding this study (Grant ANR-20-CE43-001). The authors are very grateful to the North Province of New Caledonia, which facilitated our field investigation. Leo Goehrs (Alionis) is gratefully acknowledged for the donation of the computing hardware.
-
Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.
-
Research funding: This work was supported by The Agence Nationale de la Recherche (ANR-20-CE43-001).
-
Conflict of interest statement: The authors declare no conflicts of interest regarding this article.
HRESIMS, 1D and 2D NMR spectra of compound 1, and Cartesian coordinates of the two considered N-oxide epimers are available as supplementary material.
References
1. Le Men, J, Taylor, WI. A uniform numbering system for indole alkaloids. Experientia 1965;21:508–10. https://doi.org/10.1007/bf02138961.Search in Google Scholar
2. Lu, Y, Khoo, TJ, Wiart, C. The genus Melodinus (apocynaceae): chemical and pharmacological perspectives. Pharmacol Pharm 2014;5:1–11.10.4236/pp.2014.55064Search in Google Scholar
3. Baassou, S, Mehri, HM, Rabaron, A, Plat, M. (+) melonine and NB-oxy melonine, a new indoline skeleton. Tetrahedron Lett 1983;24:761–2. https://doi.org/10.1016/s0040-4039(00)81519-1.Search in Google Scholar
4. Kouamé, T, Bernadat, G, Turpin, V, Litaudon, M, Okpekon, AT, Gallard, JF, et al.. Structure reassignment of melonine and quantum-chemical calculations-based assessment of biosynthetic scenarios leading to its revised and original structures. Org Lett 2021;23:5964–8. https://doi.org/10.1021/acs.orglett.1c02055.Search in Google Scholar PubMed
5. Zhang, Y, Ding, X, Shao, S, Guo, LL, Zhao, Q, Hao, XJ, et al.. Melocochines A and B, Two alkaloids from the fruits of Melodinus cochinchinensis. Org Lett 2019;21:9272–5. https://doi.org/10.1021/acs.orglett.9b03785.Search in Google Scholar PubMed
6. Wu, J, Zhao, SM, Shi, BB, Bao, MF, Schinnerl, J, Cai, XH. Cage-monoterpenoid quinoline alkaloids with neurite growth promoting effects from the fruits of Melodinus yunnanensis. Org Lett 2020;22:7676–80. https://doi.org/10.1021/acs.orglett.0c02871.Search in Google Scholar PubMed
7. Mehri, H, Rochat, C, Baassou, S, Sevenet, T, Plat, M. Plante de Nouvelle-Calédonie* Alcaloïdes de Melodinus reticulatus. Planta Med 1983;48:72–6. https://doi.org/10.1055/s-2007-969889.Search in Google Scholar PubMed
8. DNP. Available from: http://dnp.chemnetbase.com/ (Accessed 11 Nov 2022).Search in Google Scholar
9. Cai, XH, Li, Y, Liu, YP, Li, XN, Bao, MF, Luo, XD. Alkaloids from Melodinus yunnanensis. Phytochemistry 2012;83:116–24. https://doi.org/10.1016/j.phytochem.2012.06.013.Search in Google Scholar PubMed
10. Subramaniam, G, Hiraku, O, Hayashi, M, Koyano, T, Komiyama, K, Kam, TS. Biologically active aspidofractinine, rhazinilam, akuammiline, and vincorine alkaloids from Kopsia. J Nat Prod 2007;70:1783–9. https://doi.org/10.1021/np0703747.Search in Google Scholar PubMed
11. Li, Y, Yang, J, Zhou, X, Liang, X, Fu, Q. Fusiformines A and B: New indole alkaloids from melodinus fusiformis. Z fur Naturforsch - B J Chem Sci 2016;71:193–5. https://doi.org/10.1515/znb-2015-0052.Search in Google Scholar
12. Kitajima, M, Anbe, M, Kogure, N, Wongseripipatana, S, Takayama, H. Indole alkaloids from Kopsia jasminiflora. Tetrahedron 2014;70:9099–106. https://doi.org/10.1016/j.tet.2014.10.002.Search in Google Scholar
13. Hanwell, MD, Curtis, DE, LonieVandermeersch, DCT, Zurek, E, Hutchison, GR. Avogadro: an advanced semantic chemical editor, visualization, and analysis platform. J Cheminf 2012;4:1–17. https://doi.org/10.1186/1758-2946-4-17.Search in Google Scholar PubMed PubMed Central
14. Kam, TS, Yoganathan, K, Chuah, CH, Kopsidine, A, Kopsidine, B. Two novel indole alkaloids from a Malaysian Kopsia. Tetrahedron Lett 1993;34:1819–22. https://doi.org/10.1016/s0040-4039(00)60788-8.Search in Google Scholar
15. Kam, TS, Yoganathan, K. Three aspidofractinine-type alkaloids from Kopsia teoi. Phytochemistry 1996;42:539–41. https://doi.org/10.1016/0031-9422(95)00920-5.Search in Google Scholar
16. Kam, TS, Choo, YM. Kopsifolines A, B, and C, indole alkaloids with a novel hexacyclic carbon skeleton from Kopsia. Tetrahedron Lett 2003;44:1317–9. https://doi.org/10.1016/s0040-4039(02)02616-3.Search in Google Scholar
17. Lim, KH, Hiraku, O, Komiyama, K, Koyano, T, Hayashi, M, Kam, TS. Biologically active Indole alkaloids from Kopsia arborea. J Nat Prod 2007;70:1302–7. https://doi.org/10.1021/np0702234.Search in Google Scholar PubMed
18. Zhou, J, Fang, ZY, Zhou, P, Wang, YY, Fang, L, Zhang, H. New monoterpenoid Indole alkaloids from Melodinus suaveolens. Phytochemistry Lett 2019;33:22–5. https://doi.org/10.1016/j.phytol.2019.06.010.Search in Google Scholar
19. Klein-Júnior, LC, Cretton, S, Allard, PM, Genta-Jouve, G, Passos, CS, Salton, J, et al.. Targeted isolation of Monoterpene Indole alkaloids from Palicourea sessilis. J Nat Prod 2017;80:3032. https://doi.org/10.1021/acs.jnatprod.7b00681.Search in Google Scholar PubMed
20. Novitskiy, IM, Kutateladze, AG. DU8ML: Machine learning-augmented density functional theory nuclear magnetic resonance computations for high-throughput in silico solution structure validation and revision of complex alkaloids. J Org Chem 2022;87:4818–28. https://doi.org/10.1021/acs.joc.2c00169.Search in Google Scholar PubMed
21. Smith, SG, Goodman, JM. Assigning stereochemistry to single diastereoisomers by GIAO NMR calculation: the DP4 probability. J Am Chem Soc 2010;132:12946–59. https://doi.org/10.1021/ja105035r.Search in Google Scholar PubMed
22. Chong, KW, Yeap, JSY, Lim, SH, Weber, JFF, Low, YY, Kam, TS. Biosynthetic enantiodivergence in the eburnane alkaloids from Kopsia. J Nat Prod 2017;80:3014–24. https://doi.org/10.1021/acs.jnatprod.7b00621.Search in Google Scholar PubMed
23. Zèches, M, Lounkokobi, J, Richard, B, Plat, M, Le Men-Olivier, L, Sevenet, T, et al.. Alkaloids of Melodinus guillauminii. Phytochemistry 1984;23:171–4. https://doi.org/10.1016/0031-9422(84)83101-5.Search in Google Scholar
24. Batchily, F, Baassou, S, Mehri, H, Plat, M, Sevenet, T, Pusset, J. Plants from New Caledonia. Alkaloids from Melodinus insulae-pinorum boiteau. Ann Pharm Fr 1985;43:359–64.Search in Google Scholar
25. Hohenberg, P, Kohn, W. Inhomogeneous electron gas. Phys Rev 1964;136:B864–71. https://doi.org/10.1103/physrev.136.b864.Search in Google Scholar
26. Kohn, W, Sham, LJ. Self-consistent equations including exchange and correlation effects. Phys Rev 1965;140:A1133–8. https://doi.org/10.1103/physrev.140.a1133.Search in Google Scholar
27. Lee, C, Yang, W, Parr, RG. Development of the colle-salvetti correlation-energy formula into a functional of the electron density. Phys Rev B 1988;37:785–9. https://doi.org/10.1103/physrevb.37.785.Search in Google Scholar PubMed
28. Becke, AD. Becke’s three parameter hybrid method using the LYP correlation functional. J Chem Phys 1993;98:5648–52. https://doi.org/10.1063/1.464913.Search in Google Scholar
29. Hehre, WJ, Radom, L, Schleyer, PVR, Pople, JA. Ab Initio molecular orbital theory. New York: Wiley; 1986.Search in Google Scholar
30. Frisch, MJ, Trucks, HB, Schlegel, GW, Scuseria, GE, Robb, MA, Cheeseman, JR, et al.. Gaussian 16 revision B.01. Wallingford CT: Gaussian Inc.; 2016.Search in Google Scholar
31. Ditchfield, R. Self-consistent perturbation theory of diamagnetism: I. A gauge-invariant LCAO method for NMR chemical shifts. Mol Phys 1974;27:789–807. https://doi.org/10.1080/00268977400100711.Search in Google Scholar
32. Wolinski, K, Hinton, JF, Pulay, P. Efficient implementation of the gauge-independent atomic orbital method for NMR chemical shift calculations. J Am Chem Soc 1990;112:8251–60. https://doi.org/10.1021/ja00179a005.Search in Google Scholar
33. Ermanis, K, Parkes, KE, Agback, T, Goodman, JM. Expanding DP4: application to drug compounds and automation. Org Biomol Chem 2016;14:3943–9. https://doi.org/10.1039/c6ob00015k.Search in Google Scholar PubMed
Supplementary Material
This article contains supplementary material (https://doi.org/10.1515/znc-2022-0234).
© 2023 Walter de Gruyter GmbH, Berlin/Boston
Articles in the same Issue
- Frontmatter
- Research Articles
- Proximate analysis and fatty acid, mineral and soluble carbohydrate profiles of some brown macroalgae collected from Türkiye coasts
- Structure elucidation of an aspidofractinine-type monoterpene indole alkaloid from Melodinus reticulatus
- Crotofoligandrin, a new endoperoxide crotofolane-type diterpenoid from the twigs of Croton oligandrus Pierre ex. Hutch (Euphorbiaceae)
- Chemical composition of different plant part from Lactuca serriola L. – focus on volatile compounds and fatty acid profile
- Essential oil composition, anti-tyrosinase activity, and molecular docking studies of Knema intermedia Warb. (Myristicaceae)
- Isolation of compounds from the roots of Ambrosia artemisiifolia and their effects on human cancer cell lines
- Berberine may provide redox homeostasis during aging in rats
- The search for commercial sweet white lupin (Lupinus albus L.) adaptive to Ethiopian growing condition seems not successful: what should be done?
Articles in the same Issue
- Frontmatter
- Research Articles
- Proximate analysis and fatty acid, mineral and soluble carbohydrate profiles of some brown macroalgae collected from Türkiye coasts
- Structure elucidation of an aspidofractinine-type monoterpene indole alkaloid from Melodinus reticulatus
- Crotofoligandrin, a new endoperoxide crotofolane-type diterpenoid from the twigs of Croton oligandrus Pierre ex. Hutch (Euphorbiaceae)
- Chemical composition of different plant part from Lactuca serriola L. – focus on volatile compounds and fatty acid profile
- Essential oil composition, anti-tyrosinase activity, and molecular docking studies of Knema intermedia Warb. (Myristicaceae)
- Isolation of compounds from the roots of Ambrosia artemisiifolia and their effects on human cancer cell lines
- Berberine may provide redox homeostasis during aging in rats
- The search for commercial sweet white lupin (Lupinus albus L.) adaptive to Ethiopian growing condition seems not successful: what should be done?