Home Life Sciences Isolation of compounds from the roots of Ambrosia artemisiifolia and their effects on human cancer cell lines
Article
Licensed
Unlicensed Requires Authentication

Isolation of compounds from the roots of Ambrosia artemisiifolia and their effects on human cancer cell lines

  • Elek Ferencz , Gabriella Spengler ORCID logo , István Zupkó , Martin Vollár , Zoltán Péter Zomborszki , Norbert Kúsz , Judit Hohmann , Balázs Kovács , Dezső Csupor , Eszter Laczkó-Zöld and Boglárka Csupor-Löffler EMAIL logo
Published/Copyright: April 10, 2023

Abstract

Common ragweed (Ambrosia artemisiifolia L.) is an invasive plant in Europe with spreading use in the contemporary folk medicine. The chemical composition of the above-ground parts is extensively studied, however, the metabolites of the roots are less discovered. By multiple chromatographic purification of the root extracts, we isolated thiophene A (1), n-dodecene (2), taraxerol-3-O-acetate (3), α-linoleic acid (4), (+)-pinoresinol (5), and thiophene E (7,10-epithio-7,9-tridecadiene-3,5,11-triyne-1,2-diol) (6). The 1H NMR data published earlier for 1 were supplemented together with the assignment of 13C NMR data. Thiophene E (6), which is reported for the first time from this species, exerted cytotoxic and antiproliferative effects on A-431 epidermoid skin cancer cells, whereas taraxerol-3-O-acetate (3) and α-linoleic acid (4) had slight antiproliferative effect on gynecological cancer cell lines. Thiophene E (6) and taraxerol-3-O-acetate (3) displayed antiproliferative and cytotoxic effects on MRC-5 fibroblast cells. Thiophene E (6) exerted weak antibacterial activity (MIC 25 μg/mL) on MRSA ATCC 43300, on Staphylococcus aureus ATCC 25923, Escherichia coli AG100 and E. coli ATCC 25922 both thiophenes were inactive. Although the isolated compounds exerted no remarkable cytotoxic or antiproliferative activities, the effects on MRC-5 fibroblast cells highlight the necessity of further studies to support the safety of ragweed root.


Corresponding author: Boglárka Csupor-Löffler, Faculty of Pharmacy, Institute of Pharmacognosy, University of Szeged, Eötvös u. 6, H-6720 Szeged, Hungary; and Medical School, Institute for Translational Medicine, University of Pécs, Szigeti út 12, H-7624 Pécs, Hungary, E-mail:

Funding source: National Research, Development and Innovation Office, Hungary

Award Identifier / Grant number: NKFIH K135845

  1. Author contributions: Boglárka Csupor-Löffler, István Zupkó and Gabriella Spengler contributed to the study conception and design. Material preparation, data collection and analysis were performed by Judit Hohmann, Norbert Kúsz, Martin Vollár, Eszter Laczkó-Zöld and Elek Ferencz. Laboratory experiments were performed by Elek Ferencz, Boglárka Csupor-Löffler, Martin Vollár, Zoltán Péter Zomborszki, Balázs Kovács and Gabriella Spengler. The first draft of the manuscript was written by Boglárka Csupor-Löffler, István Zukó, Judit Hohmann, Dezső Csupor and Gabriella Spengler and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript. All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: This research was funded by the National Research, Development and Innovation Office, Hungary, grant number NKFIH K135845.

  3. Conflict of interest statement: The authors declare no conflict of interest.

References

1. Payne, WW. Notes on the ragweeds of South America with the description of two new species: Ambrosia Pannosa and A. Parvifolia (Compositae). Brittonia 1966;18:28–37. https://doi.org/10.2307/2805107.Search in Google Scholar

2. Gerber, E, Schaffner, U, Gassmann, A, Hinz, HL, Seier, M, Müller-Schärer, H. Prospects for biological control of Ambrosia artemisiifolia in Europe: learning from the past. Weed Res 2011;51:559–73. https://doi.org/10.1111/J.1365-3180.2011.00879.X.Search in Google Scholar

3. Cunze, S, Leiblein, MC, Tackenberg, O. Range expansion of Ambrosia artemisiifolia in Europe is promoted by climate change. ISRN Ecol 2013;2013:1–9. https://doi.org/10.1155/2013/610126.Search in Google Scholar

4. EFSA. Scientific opinion on the effect on public or animal health or on the environment on the presence of seeds of Ambrosia spp. in animal feed. EFSA J 2010;8. https://doi.org/10.2903/J.EFSA.2010.1566.Search in Google Scholar

5. Kiss, T, Csupor, D, Szendrei, K. Is the common ragweed a medicinal herb? Gyogyszereszet 2012;56:560–7.Search in Google Scholar

6. Kiss, T, Szabó, A, Oszlánczi, G, Lukács, A, Tímár, Z, Tiszlavicz, L, et al.. Repeated-dose toxicity of common ragweed on rats. PLoS One 2017;12. https://doi.org/10.1371/journal.pone.0176818.Search in Google Scholar PubMed PubMed Central

7. Solujić, S, Sukdolak, S, Vuković, N, Nićiforović, N, Stanić, S. Chemical composition and biological activity of the acetone extract of Ambrosia artemisiifolia L. pollen. J Serb Chem Soc 2008;73:1039–49. https://doi.org/10.2298/JSC0811039S.Search in Google Scholar

8. Bianchi, E, Culvenor, CCJ, Loder, JW. Psilostachyin, a cytotoxic constituent of Ambrosia artemsisiifolia L. Aust J Chem 1968;21:1109–11. https://doi.org/10.1071/CH9681109.Search in Google Scholar

9. David, JP, Alessandro, AJ, Maria, ML, David, JM, Chai, HB, Pezzuto, JM, et al.. Sesquiterpene lactones from Ambrosia artemisiaefolia (Asteraceae). Pharm Biol 2008;37:165–8. https://doi.org/10.1076/PHBI.37.2.165.6077.Search in Google Scholar

10. Taglialatela-Scafati, O, Pollastro, F, Minassi, A, Chianese, G, De Petrocellis, L, Di Marzo, V, et al.. Sesquiterpenoids from Common Ragweed (Ambrosia artemisiifolia L.), an invasive biological polluter. Planta Med 2012;78:PI207. https://doi.org/10.1055/S-0032-1320895.Search in Google Scholar

11. Parkhomenko, AY, Andreeva, OA, Oganesyan, ET, Ivashev, MN. Ambrosia artemisiifolia as a source of biologically active substances. Pharm Chem J 2005;39:149–53. https://doi.org/10.1007/S11094-005-0106-Z/METRICS.Search in Google Scholar

12. Raszeja, W, Gill, S. Isolation and identification of psilostachyin B from Ambrosia artemisiifolia L. Planta Med 1977;32:319–22. https://doi.org/10.1055/S-0028-1097606/BIB.Search in Google Scholar

13. Porter, TH, Mabry, TJ. Sesquiterpene lactones. Constituents of Ambrosia artemisiifolia L. (Compositae). Phytochemistry 1969;8:793–4. https://doi.org/10.1016/S0031-9422(00)85858-6.Search in Google Scholar

14. Tiansheng, L, Parodi, FJ, Vargas, D, Quijano, L, Mertooetomo, ER, Hjortso, MA, et al.. Sesquiterpenes and thiarubrines from Ambrosia trifida and its transformed roots. Phytochemistry 1993;33:113–6. https://doi.org/10.1016/0031-9422(93)85405-G.Search in Google Scholar

15. An, JP, Ha, TKQ, Kim, HW, Ryu, B, Kim, J, Park, J, et al.. Eudesmane glycosides from Ambrosia artemisiifolia (common ragweed) as potential neuroprotective agents. J Nat Prod 2019;82:1128–38. https://doi.org/10.1021/ACS.JNATPROD.8B00841.Search in Google Scholar

16. Ding, W, Huang, R, Zhou, Z, Li, Y. New sesquiterpenoids from Ambrosia artemisiifolia L. Molecules 2015;20:4450–9. https://doi.org/10.3390/MOLECULES20034450.Search in Google Scholar

17. Bohlmann, F, Burkhardt, T, Zdero, C. Naturally occurring acetylenes. London, New York: Academic Press; 1973.Search in Google Scholar

18. Fischer, NH, Quijano, L. Allelopathic agents from common weeds. In: Thompson, AC, editor The Chemistry of allelopathy; 1985:133–47 pp.10.1021/bk-1985-0268.ch009Search in Google Scholar

19. Billodeaux, DR, Benavides, GA, Fischer, NH, Fronczek, FR. Taraxerol acetate at 100K. Acta Crystallogr Section C 1999;55:2129–31. https://doi.org/10.1107/S0108270199011403.Search in Google Scholar PubMed

20. Kovács, B, Hohmann, J, Csupor-Löffler, B, Kiss, T, Csupor, D. A comprehensive phytochemical and pharmacological review on sesquiterpenes from the genus Ambrosia. Heliyon 2022;8:e09884. https://doi.org/10.1016/J.HELIYON.2022.E09884.Search in Google Scholar PubMed PubMed Central

21. Réthy, B, Csupor-Löffler, B, Zupkó, I, Hajdú, Z, Máthé, I, Hohmann, J, et al.. Antiproliferative activity of Hungarian Asteraceae species against human cancer cell lines. Part I. Phytother Res 2007;21:1200–8. https://doi.org/10.1002/PTR.2240.Search in Google Scholar PubMed

22. Nové, M, Kincses, A, Szalontai, B, Rácz, B, Blair, JMA, González-Prádena, A, et al.. Biofilm eradication by symmetrical selenoesters for food-borne pathogens. Microorganisms 2020;8:566. https://doi.org/10.3390/MICROORGANISMS8040566.Search in Google Scholar PubMed PubMed Central

23. Dávid, CZ, Kúsz, N, Pinke, G, Kulmány, Á, Zupkó, I, Hohmann, J, et al.. Jacaranone derivatives with antiproliferative activity from Crepis pulchra and relevance of this group of plant metabolites. Plants 2022;11:782. https://doi.org/10.3390/PLANTS11060782.Search in Google Scholar PubMed PubMed Central

24. CLSI. Performance standards for antimicrobial susceptibility testing, 27th Aufl. Wayne (PA): Clinical and Laboratory Standards Institute (CLSI); 2017.Search in Google Scholar

25. Balza, F, Lopez, I, Rodriguez, E, Towers, GHN. Dithiacyclohexadienes and thiophenes from Ambrosia chamissonis. Phytochemistry 1989;28:3523–4. https://doi.org/10.1016/0031-9422(89)80378-4.Search in Google Scholar

26. Ko, HH, Chang, WL, Lu, TM. Antityrosinase and antioxidant effects of ent-kaurane diterpenes from leaves of Broussonetia papyrifera. J Nat Prod 2008;71:1930–3. https://doi.org/10.1021/NP800564Z/SUPPL_FILE/NP800564Z_SI_001.Search in Google Scholar

27. Carpinella, MC, Giorda, LM, Ferrayoli, CG, Palacios, SM. Antifungal effects of different organic extracts from Melia azedarach L. on phytopathogenic fungi and their isolated active components. J Agric Food Chem 2003;51:2506–11. https://doi.org/10.1021/JF026083F.Search in Google Scholar

28. Santarén, JF, Rico, M, Guilleme, J. 13C NMR spectra of 1-stearoyl-2-linoleyl-sn-glycero-3-phosphorylcholine and 1-stearoyl-2-arachidonoyl-sn-glycero-3-phosphorylcholine in CDCl3 solution and in sonicated dispersions in 2H2O. Org Magn Reson 1982;18:98–103. https://doi.org/10.1002/MRC.1270180211.Search in Google Scholar

29. Rojas, G, Wagener, KB. Avoiding olefin isomerization during decyanation of alkylcyano α,ω-dienes: a deuterium labeling and structural study of mechanism. J Org Chem 2008;73:4962–70. https://doi.org/10.1021/JO800640J/SUPPL_FILE/JO800640J-FILE004.Search in Google Scholar

30. Azman, NAN, Alhawarri, MB, Rawa, MSA, Dianita, R, Gazzali, AM, Nogawa, T, et al.. Potential anti-acetylcholinesterase activity of Cassia timorensis DC. Molecules 2020;25:4545. https://doi.org/10.3390/MOLECULES25194545.Search in Google Scholar PubMed PubMed Central

31. Hafez, HN, Alsalamah, SA, El-Gazzar, ARBA. Synthesis of thiophene and N-substituted thieno[3,2-d] pyrimidine derivatives as potent antitumor and antibacterial agents. Acta Pharm 2017;67:275–92. https://doi.org/10.1515/ACPH-2017-0028.Search in Google Scholar PubMed

32. Ellis, SM, Balza, F, Constabel, P, Hudson, JB, Towers, GHN. Thiarubrines: novel dithiacyclohexadiene polyyne photosensitizers from higher plants. In: ACS symposium series. American Chemical Society; 1995:164–78 pp.10.1021/bk-1995-0616.ch014Search in Google Scholar

33. Sørensen, J, Stene Mortensen, JT, Sørensen, NA. Studies related to naturally occurring acetylene compounds. XXXI. A preliminary note on the acetylenic constituents of Calocephalus citreus less. Acta Chem Scand 1964;18:2182–3. https://doi.org/10.3891/acta.chem.scand.18-2182.Search in Google Scholar

34. Gomez-Barrios, ML, Parodi, FJ, Vargas, D, Quijano, L, Hjortso, MA, Flores, HE, et al.. Studies on the biosynthesis of thiarubrine a in hairy root cultures of Ambrosia artemisiifolia using 13C-labelled acetates. Phytochemistry 1992;31:2703–7. https://doi.org/10.1016/0031-9422(92)83615-6.Search in Google Scholar

35. Archna, Pathania, S, Chawla, PA. Thiophene-based derivatives as anticancer agents: an overview on decade’s work. Bioorg Chem 2020;101:104026. https://doi.org/10.1016/J.BIOORG.2020.104026.Search in Google Scholar

36. Csupor-Löffler, B, Hajdú, Z, Zupkó, I, Molnár, J, Forgo, P, Vasas, A, et al.. Antiproliferative constituents of the roots of Conyza canadensis. Planta Med 2011;77:1183–8. https://doi.org/10.1055/S-0030-1270714.Search in Google Scholar

37. Hong, JF, Song, YF, Liu, Z, Zheng, ZC, Chen, HJ, Wang, SS. Anticancer activity of taraxerol acetate in human glioblastoma cells and a mouse xenograft model via induction of autophagy and apoptotic cell death, cell cycle arrest and inhibition of cell migration. Mol Med Rep 2016;13:4541–8. https://doi.org/10.3892/MMR.2016.5105.Search in Google Scholar

38. Novel food catalogue; 2022. Available from: https://webgate.ec.europa.eu/fip/novel_food_catalogue/# [Accessed 19 Jun 2022].Search in Google Scholar


Supplementary Material

This article contains supplementary material (https://doi.org/10.1515/znc-2022-0239).


Received: 2022-12-01
Accepted: 2023-03-16
Published Online: 2023-04-10
Published in Print: 2023-07-26

© 2023 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 31.12.2025 from https://www.degruyterbrill.com/document/doi/10.1515/znc-2022-0239/html
Scroll to top button