Home Physical Sciences SmPt2In2 – a new ternary indide with a Pt–In polyanionic framework
Article
Licensed
Unlicensed Requires Authentication

SmPt2In2 – a new ternary indide with a Pt–In polyanionic framework

  • Nazar Zaremba EMAIL logo , Ihor Muts , Volodymyr Pavlyuk , Viktor Hlukhyy , Rainer Pöttgen , Dariusz Kaczorowski and Vasyl Zaremba
Published/Copyright: June 15, 2021

Abstract

Single crystals of a new samarium platinum indide have been synthesized in a high-frequency furnace under flowing argon atmosphere. The crystal structure of SmPt2In2 was determined from single-crystal X-ray data (R1 = 0.0416 for 1049 F values and 63 variables). It belongs to the CePt2In2 structure type with the following crystallographic parameters: P21/m, mP20, Z = 4, a = 10.0561(8), b = 4.4214(2), c = 10.1946(8) Å, β = 116.492(5)°, V = 405.68(5) Å3. Physical properties were studied and the crystal chemical discussion is supported by electronic structure calculations.


Corresponding author: Nazar Zaremba, Department of Chemistry, Technische Universität München, Lichtenbergstrasse 4, 85747Garching, Germany; and Department of Inorganic Chemistry, Ivan Franko National University of Lviv, Kyryla and Mefodiya street 6, 79005Lviv, Ukraine, E-mail:

Funding source: Deutscher Akademischer Austauschdienst

Award Identifier / Grant number: 91619802

Funding source: National Science Centre, Poland

Award Identifier / Grant number: 2017/25/B/ST8/02179

  1. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: This work was supported by the Deutscher Akademischer Austauschdienst (Nr 91619802) and partially by the National Science Centre, Poland (nr 2017/25/B/ST8/02179).

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

1. Zaremba, V. I., Dubenskiy, V. P., Rodewald, U. Ch., Heying, B., Pöttgen, R. J. Solid State Chem. 2006, 179, 891–897; https://doi.org/10.1016/j.jssc.2005.12.022.Search in Google Scholar

2. Malik, S. K., Vijayaraghavan, R., Adroja, D. T., Padalia, B. D., Edelstein, A. S. J. Magn. Magn Mater. 1990, 92, 80–86; https://doi.org/10.1016/0304-8853(90)90682-g.Search in Google Scholar

3. Galadzhun, Y. V., Pöttgen, R. Z. Anorg. Allg. Chem. 1999, 625, 481–487; https://doi.org/10.1002/(sici)1521-3749(199903)625:3<481::aid-zaac481>3.0.co;2-0.10.1002/(SICI)1521-3749(199903)625:3<481::AID-ZAAC481>3.0.CO;2-0Search in Google Scholar

4. Zaremba, V. I., Galadzhun, Y. V., Belan, B. D., Pikul, A. P., Stepień-Damm, J., Kaczorowski, D. J. Alloys Compd. 2001, 316, 64–69; https://doi.org/10.1016/s0925-8388(00)01455-9.Search in Google Scholar

5. Hulliger, F. J. Alloys Compd. 1995, 217, 164–166; https://doi.org/10.1016/0925-8388(94)01357-8.Search in Google Scholar

6. Zaremba, R. I., Rodewald, U. C., Pöttgen, R. Monatsh. Chem. 2007, 138, 819–822; https://doi.org/10.1007/s00706-007-0702-6.Search in Google Scholar

7. Zaremba, V., Galadzhun, Y., Kalychak, Y., Kaczorowski, D., Stepień-Damm, J. J. Alloys Compd. 2000, 296, 280–284; https://doi.org/10.1016/s0925-8388(99)00542-3.Search in Google Scholar

8. Rodriguez-Carvajal, J. FullProf: a program for Rietveld refinement and pattern matching analysis. In At the Satellite Meeting on Powder Diffraction of the XV IUCr Congress, Toulouse, France, 1990.Search in Google Scholar

9. x-red (1.62.2), Data Reduction Program; Stoe & Cie.: Darmstadt, Germany, 2015.Search in Google Scholar

10. x-shape (2.18), Crystal Optimization for Numerical Absorption Correction; Stoe & Cie.: Darmstadt, Germany, 2015.Search in Google Scholar

11. Sheldrick, G. M. Shelxl-2014, Program for Crystal Structure Refinement; University of Göttingen: Göttingen, Germany, 2014.Search in Google Scholar

12. Emsley, J. The Elements; Oxford University Press: Oxford, 1999.Search in Google Scholar

13. Zaremba, V. I., Kalychak, Y. M., Zakharko, O. Y., Bodak, O. I. Dopov. Akad. Nauk Ukr. RSR, Ser. B 1987, 12, 44–46.Search in Google Scholar

14. Zaremba, V. I., Kaczorowski, D., Rodewald, U. Ch., Hoffmann, R.-D., Pöttgen, R. Chem. Mater. 2004, 16, 466–476; https://doi.org/10.1021/cm031139m.Search in Google Scholar

15. Zaremba, V. I., Kalychak, Y. M., Dubenskiy, V. P., Hoffmann, R.-D., Pöttgen, R. J. Solid State Chem. 2000, 152, 560–567; https://doi.org/10.1006/jssc.2000.8731.Search in Google Scholar

16. Zaremba, V. I., Dubenskiy, V. P., Pöttgen, R. Z. Naturforsch. 2002, 57b, 798–802; https://doi.org/10.1515/znb-2002-0712.Search in Google Scholar

17. Zaremba, V. I., Hlukhyy, V., Pöttgen, R. Z. Anorg. Allg. Chem. 2005, 631, 327–331; https://doi.org/10.1002/zaac.200400142.Search in Google Scholar

18. Zaremba, V. I., Rodewald, U. Ch., Pöttgen, R. Z. Anorg. Allg. Chem. 2005, 631, 1065–1070; https://doi.org/10.1002/zaac.200400452.Search in Google Scholar

19. Hull, A. W. Science 1920, 52, 227–229; https://doi.org/10.1126/science.52.1340.227.Search in Google Scholar PubMed

20. Andersen, O. K. Phys. Rev. B 1975, 12, 3060–3083; https://doi.org/10.1103/physrevb.12.3060.Search in Google Scholar

21. Andersen, O. K., Jepsen, O. Phys. Rev. Lett. 1984, 53, 2571–2574; https://doi.org/10.1103/physrevlett.53.2571.Search in Google Scholar

22. Andersen, O. K., Pawlowska, Z., Jepsen, O. Phys. Rev. B 1986, 34, 5253–5269; https://doi.org/10.1103/physrevb.34.5253.Search in Google Scholar PubMed

23. von Barth, U., Hedin, L. J. Phys. C: Solid State Phys. 1972, 5, 1629–1642; https://doi.org/10.1088/0022-3719/5/13/012.Search in Google Scholar

24. Dronskowski, R., Blöchl, P. E. J. Phys. Chem. 1993, 97, 8617–8624; https://doi.org/10.1021/j100135a014.Search in Google Scholar

25. Becke, A. D., Edgecombe, K. E. J. Chem. Phys. 1990, 92, 5397–5403; https://doi.org/10.1063/1.458517.Search in Google Scholar

26. Eck, B. RWTH Aachen, Aachen, Germany, wxdragon 1.6.6, 2013.Search in Google Scholar

Received: 2021-05-07
Accepted: 2021-05-27
Published Online: 2021-06-15
Published in Print: 2021-06-25

© 2021 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 5.12.2025 from https://www.degruyterbrill.com/document/doi/10.1515/zkri-2021-2028/html
Scroll to top button