Home Physical Sciences New compound Sm2Ru3Sn5 with a structure derived from Ru3Sn7
Article
Licensed
Unlicensed Requires Authentication

New compound Sm2Ru3Sn5 with a structure derived from Ru3Sn7

  • Vera Pavlova EMAIL logo and Elena Murashova
Published/Copyright: May 31, 2021

Abstract

Ternary intermetallic compound Sm2Ru3Sn5 was synthesized in the system Sm-Ru-Sn by arc-melting and annealing at 600 °C in the field with high content of Sn. Its crystal structure was determined using single crystal X-ray diffraction data (at 240 K). The compound crystallizes in cubic system with space group I43m (No. 217), unit cell parameter is a = 9.4606 (8) Å, Z = 4, Pearson symbol c/40. The intermetallic compound Sm2Ru3Sn5 represents an ordered version of the centrosymmetric Ru3Sn7 structure (space group Im3m), in which 16f Sn-filled crystallographic site is split into two 8c sites, each of which is solely occupied of one sort of atoms – Sn or Sm. The occupation of these two 8c sites leads to a reduction of symmetry due to the removal of the inversion center.


Corresponding author: Vera Pavlova, Chemistry Department, Lomonosov Moscow State University, Moscow 119991, Russia, E-mail:

Funding source: Russian Foundation for Basic Research (RFBR)

Award Identifier / Grant number: 19-03-00135-a

Acknowledgements

The experimental data for X-ray structure analysis were obtained using equipment at the Shared Physical Characterization Facilities Center, Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences.

  1. Author contribution: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: The authors are thankful to the Russian Foundation for Basic Research (RFBR) for financial support (Grant No. 19-03-00135-a).

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

1. Biswas, P. K., Balakrishnan, G., Paul, D. Mc. K., Lees, M. R., Hillier, A. D. Phys. Rev. B 2011, 83, 054517. https://doi.org/10.1103/PhysRevB.83.054517.Search in Google Scholar

2. Sung, N. H., Roh, C. J., Kim, K. S., Cho, B. K. Phys. Rev. B 2012, 86, 224507. https://doi.org/10.1103/PhysRevB.86.224507.Search in Google Scholar

3. Schmidt, H., Müller, M., Braun, H. F. Phys. Rev. B 1996, 53, 12389. https://doi.org/10.1103/PhysRevB.53.12389.Search in Google Scholar

4. Singh, Y., Ramakrishnan, D. P. S., Awasthi, A. M., Malik, S. K. Phys. Rev. B 2005, 71, 045109. https://doi.org/10.1103/PhysRevB.71.045109.Search in Google Scholar

5. Ibrahim, I. A. J. Comput. Chem. 2017, 38, 2475–2480. https://doi.org/10.1002/jcc.24906.Search in Google Scholar

6. Sarkar, S., Subbarao, U., Joseph, B., Peter, S. J. Solid State Chem. 2015, 225, 181–186. https://doi.org/10.1016/j.jssc.2014.12.023.Search in Google Scholar

7. Kussmann, D., Pöttgen, R., Kotzyba, G. J. Solid State Chem. 2000, 150, 112–120. https://doi.org/10.1006/jssc.1999.8555.Search in Google Scholar

8. Kaczorowski, D., Pikul, A. P., Burkhardt, U., Schmidt, M., Slebarski, A., Szajek, A., Werwinski, M., Grin, Yu. J. Phys. Condens. Matter 2010, 22, 215601. https://doi.org/10.1088/0953-8984/22/21/215601.Search in Google Scholar

9. Godart, C., Gupta, L., Tomy, C., Patil, S., Nagarajan, R., Beaurepaire, E., Vijayaraghavan, R., Yakhmi, J. Mater. Res. Bull. 1988, 23, 1781.10.1016/0025-5408(88)90189-4Search in Google Scholar

10. Anand, V., Hossain, Z., Geibel, C. Phys. Rev. B 2008, 77, 184407. https://doi.org/10.1103/PhysRevB.77.184407.Search in Google Scholar

11. Singh, Y., Ramakrishnan, S., Hossain, Z., Geibel, C. Phys. Rev. B 2002, 66, 014415. https://doi.org/10.1103/PhysRevB.66.014415.Search in Google Scholar

12. Hossain, Z., Ohmoto, H., Umeo, K., Iga, F., Suzuki, T., Takabatake, T., Takamoto, N., Kindo, K. Phys. Rev. B 1999, 60, 10383. https://doi.org/10.1103/PhysRevB.60.10383.Search in Google Scholar

13. Anand, V., Anupam, K., Hossain, Z., Ramakrishnan, S., Thamizhavel, A., Adroja, D. J. Magn. Magn Mater. 2012, 324, 2483–2487. https://doi.org/10.1016/j.jmmm.2012.03.016.Search in Google Scholar

14. Yarmolyuk, Y., Aksel’rud, L. Sov. Phys. Crystallogr. 1977, 22, 358–359.10.1007/BF02074393Search in Google Scholar

15. Akselrud, L., Yarmolyuk, Y., Gladyshevskii, E. Sov. Phys. Crystallogr. 1977, 22, 492–493.Search in Google Scholar

16. Gorelenko, Y., Skolozdra, R., Dutchak, Y., Yarovets, V., Shcherba, I., Bodak, O. Ukr. Fiz. Zh. 1985, 30, 301–304.Search in Google Scholar

17. Méot Meyer, M., Venturini, G., Malaman, B., Steinmetz, J., Roques, B. Mater. Res. Bull. 1984, 19, 1181–1186. https://doi.org/10.1016/0025-5408(84)90069-2.Search in Google Scholar

18. Pöttgen, R., Lang, A., Hoffmann, R. D., Künnen, B., Kotzyba, G., Müllmann, R., Mosel, B. D., Rosenhahn, C. Z. Kristallogr. 1999, 214, 143–150. https://doi.org/10.1524/zkri.1999.214.3.143.Search in Google Scholar

19. Galadzhun, Y., Hoffmann, R.-D., Pöttgen, R., Adam, M. J. Solid State Chem. 1999, 148, 425–432. https://doi.org/10.1006/jssc.1999.8471.Search in Google Scholar

20. Sebastian, C., Salvador, J., Martin, J., Kanatzidis, M. Inorg. Chem. 2010, 49, 10468–10474. https://doi.org/10.1021/ic101502e.Search in Google Scholar

21. Bugaris, D. E., Malliakas, C. D., Bud’ko, S. L., Calta, N. P., Chung, D. Y., Kanatzidis, M. G. Inorg. Chem. 2017, 56, 14584–14595. https://doi.org/10.1021/acs.inorgchem.7b02389.Search in Google Scholar

22. Fukuhara, T., Sakamoto, I., Sato, H. J. Phys. Condens. Matter 1991, 3, 8917. https://doi.org/10.1088/0953-8984/3/45/014.Search in Google Scholar

23. Fukuhara, T., Iwakawa, S., Sato, H. J. Magn. Magn Mater. 1992, 104, 667–668. https://doi.org/10.1016/0304-8853(92)90975-T.Search in Google Scholar

24. Godart, C., Mazumdar, C., Dhar, S., Flandorfer, K., Nagarajan, R., Gupta, L., Vijayaraghavan, R. Europhys. Lett. 1994, 27, 215.10.1209/0295-5075/27/3/008Search in Google Scholar

25. Zumdick, M. F., Pöttgen, R. Z. Naturforsch. B Chem. Sci. 1999, 54, 863–869. https://doi.org/10.1515/znb-1999-0707.Search in Google Scholar

26. Koch, N. E., Strydom, A. M. J. Magn. Magn Mater. 2008, 320, 128–131. https://doi.org/10.1016/j.jmmm.2008.02.028.Search in Google Scholar

27. Heying, B., Kösters, J., Hoffmann, R. D., Heletta, L., Pöttgen, R. Z. Naturforsch. B Chem. Sci. 2017, 72, 753–758. https://doi.org/10.1515/znb-2017-0127.Search in Google Scholar

28. Gamza, M. B., Gumeniuk, R., Burkhardt, U., Schnelle, W., Rosner, H., Leithe-Jasper, A., Slebarski, A. Phys. Rev. B 2017, 95, 165142. https://doi.org/10.1103/PhysRevB.95.165142.Search in Google Scholar

29. Patil, N., Ramakrishnan, S. Phys. Rev. B 1999, 59, 12054–12063. https://doi.org/10.1103/PhysRevB.59.12054.Search in Google Scholar

30. Palenzona, A., Canepa, F. J. Less Common. Met. 1989, 155, L31–L33. https://doi.org/10.1016/0022-5088(89)90246-4.Search in Google Scholar

31. Okamoto, H. J. Phase Equil. 1991, 12, 253–254. https://doi.org/10.1007/BF02645731.Search in Google Scholar

32. Schwomma, O., Nowotny, H., Wittmann, A. Monatsh. Chem. 1964, 95, 1538–1543. https://doi.org/10.1007/bf00901709.Search in Google Scholar

33. Shevchenko, M. O., Berezutski, V. V., Ivanov, M. I., Kudin, V. G., Sudavtsova, V. S. J. Phase Equilibria Diffus. 2015, 36, 39–52. https://doi.org/10.1007/s11669-014-0353-3.Search in Google Scholar

34. Sheldrick, G. M. XPRER 6.14, Bruker Saint. BRUKER APEX 2016, 3.Search in Google Scholar

35. Sheldrick, G. M. Sadabs – Bruker Nonius Area Detector Scaling and Absorption Correction; Univesity of Göttingen: Germany, 2004.Search in Google Scholar

36. Sheldrick, G. M. Acta Crystallogr. 2015, C71, 3–8. https://doi.org/10.1107/S2053229614024218.Search in Google Scholar

37. Stoe Winxpow (Version 2.24). Stoe & Cie GmbH, Germany, Darmstadt, 2009.Search in Google Scholar

38. Rodriguez-Carvajal, J. Phys. B 1993, 192, 55–69.10.1016/0921-4526(93)90108-ISearch in Google Scholar

39. Roisnel, T., Rodriguez-Carvajal, J. Mater. Sci. Forum 2000, 118–123.10.4028/www.scientific.net/MSF.378-381.118Search in Google Scholar

40. Brandenburg, K. Diamond. Release 3.0; Crystal Impact Gmbh: Bonn, Germany, 2005.Search in Google Scholar

41. Nowotny, H. N., Schubert, K. Dettinger, U. Metallforschung 1946, 1, 137–145.10.1515/ijmr-1946-374-506Search in Google Scholar

42. Bryan, C., Mandrus, D. J. Alloys Compd. 1998, 281, 157–159. https://doi.org/10.1016/S0925-8388(98)00790-7.Search in Google Scholar

43. Spek, A. L. PLATON. Acta Crystallogr. A 2009, D65, 148–155. https://doi.org/10.1107/S090744490804362X.Search in Google Scholar

44. Eriksson, L., Lanner, J. Acta Crystallogr. 2001, E57, 185–186. https://doi.org/10.1107/S1600536801014246.Search in Google Scholar

45. Jensen, P., Kjekshus, A. J. Less Common. Met. 1967, 13, 357–359. https://doi.org/10.1016/0022-5088(67)90144-0.Search in Google Scholar

46. Soheilnia, N., Giraldi, J., Assoud, A., Zhang, H., Tritt, T., Kleinke, H. J. Alloys Compd. 2008, 448, 148–152. https://doi.org/10.1016/j.jallcom.2006.10.056.Search in Google Scholar

47. Emsley, J. The Elements; Clarendon Press: Oxford, 1991.Search in Google Scholar

48. Bärnighausen, H. Commun. Math. Chem. 1980, 9, 139–175.10.1007/BF01674443Search in Google Scholar

49. Müller, U. Z. Anorg. Allg. Chem. 2004, 630, 1519–1537. https://doi.org/10.1002/zaac.200400250.Search in Google Scholar

Received: 2021-02-02
Accepted: 2021-05-11
Published Online: 2021-05-31
Published in Print: 2021-06-25

© 2021 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 5.12.2025 from https://www.degruyterbrill.com/document/doi/10.1515/zkri-2021-2013/html
Scroll to top button