Abstract
Ternary intermetallic compound Sm2Ru3Sn5 was synthesized in the system Sm-Ru-Sn by arc-melting and annealing at 600 °C in the field with high content of Sn. Its crystal structure was determined using single crystal X-ray diffraction data (at 240 K). The compound crystallizes in cubic system with space group I
Funding source: Russian Foundation for Basic Research (RFBR)
Award Identifier / Grant number: 19-03-00135-a
Acknowledgements
The experimental data for X-ray structure analysis were obtained using equipment at the Shared Physical Characterization Facilities Center, Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences.
Author contribution: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.
Research funding: The authors are thankful to the Russian Foundation for Basic Research (RFBR) for financial support (Grant No. 19-03-00135-a).
Conflict of interest statement: The authors declare no conflicts of interest regarding this article.
References
1. Biswas, P. K., Balakrishnan, G., Paul, D. Mc. K., Lees, M. R., Hillier, A. D. Phys. Rev. B 2011, 83, 054517. https://doi.org/10.1103/PhysRevB.83.054517.Search in Google Scholar
2. Sung, N. H., Roh, C. J., Kim, K. S., Cho, B. K. Phys. Rev. B 2012, 86, 224507. https://doi.org/10.1103/PhysRevB.86.224507.Search in Google Scholar
3. Schmidt, H., Müller, M., Braun, H. F. Phys. Rev. B 1996, 53, 12389. https://doi.org/10.1103/PhysRevB.53.12389.Search in Google Scholar
4. Singh, Y., Ramakrishnan, D. P. S., Awasthi, A. M., Malik, S. K. Phys. Rev. B 2005, 71, 045109. https://doi.org/10.1103/PhysRevB.71.045109.Search in Google Scholar
5. Ibrahim, I. A. J. Comput. Chem. 2017, 38, 2475–2480. https://doi.org/10.1002/jcc.24906.Search in Google Scholar
6. Sarkar, S., Subbarao, U., Joseph, B., Peter, S. J. Solid State Chem. 2015, 225, 181–186. https://doi.org/10.1016/j.jssc.2014.12.023.Search in Google Scholar
7. Kussmann, D., Pöttgen, R., Kotzyba, G. J. Solid State Chem. 2000, 150, 112–120. https://doi.org/10.1006/jssc.1999.8555.Search in Google Scholar
8. Kaczorowski, D., Pikul, A. P., Burkhardt, U., Schmidt, M., Slebarski, A., Szajek, A., Werwinski, M., Grin, Yu. J. Phys. Condens. Matter 2010, 22, 215601. https://doi.org/10.1088/0953-8984/22/21/215601.Search in Google Scholar
9. Godart, C., Gupta, L., Tomy, C., Patil, S., Nagarajan, R., Beaurepaire, E., Vijayaraghavan, R., Yakhmi, J. Mater. Res. Bull. 1988, 23, 1781.10.1016/0025-5408(88)90189-4Search in Google Scholar
10. Anand, V., Hossain, Z., Geibel, C. Phys. Rev. B 2008, 77, 184407. https://doi.org/10.1103/PhysRevB.77.184407.Search in Google Scholar
11. Singh, Y., Ramakrishnan, S., Hossain, Z., Geibel, C. Phys. Rev. B 2002, 66, 014415. https://doi.org/10.1103/PhysRevB.66.014415.Search in Google Scholar
12. Hossain, Z., Ohmoto, H., Umeo, K., Iga, F., Suzuki, T., Takabatake, T., Takamoto, N., Kindo, K. Phys. Rev. B 1999, 60, 10383. https://doi.org/10.1103/PhysRevB.60.10383.Search in Google Scholar
13. Anand, V., Anupam, K., Hossain, Z., Ramakrishnan, S., Thamizhavel, A., Adroja, D. J. Magn. Magn Mater. 2012, 324, 2483–2487. https://doi.org/10.1016/j.jmmm.2012.03.016.Search in Google Scholar
14. Yarmolyuk, Y., Aksel’rud, L. Sov. Phys. Crystallogr. 1977, 22, 358–359.10.1007/BF02074393Search in Google Scholar
15. Akselrud, L., Yarmolyuk, Y., Gladyshevskii, E. Sov. Phys. Crystallogr. 1977, 22, 492–493.Search in Google Scholar
16. Gorelenko, Y., Skolozdra, R., Dutchak, Y., Yarovets, V., Shcherba, I., Bodak, O. Ukr. Fiz. Zh. 1985, 30, 301–304.Search in Google Scholar
17. Méot Meyer, M., Venturini, G., Malaman, B., Steinmetz, J., Roques, B. Mater. Res. Bull. 1984, 19, 1181–1186. https://doi.org/10.1016/0025-5408(84)90069-2.Search in Google Scholar
18. Pöttgen, R., Lang, A., Hoffmann, R. D., Künnen, B., Kotzyba, G., Müllmann, R., Mosel, B. D., Rosenhahn, C. Z. Kristallogr. 1999, 214, 143–150. https://doi.org/10.1524/zkri.1999.214.3.143.Search in Google Scholar
19. Galadzhun, Y., Hoffmann, R.-D., Pöttgen, R., Adam, M. J. Solid State Chem. 1999, 148, 425–432. https://doi.org/10.1006/jssc.1999.8471.Search in Google Scholar
20. Sebastian, C., Salvador, J., Martin, J., Kanatzidis, M. Inorg. Chem. 2010, 49, 10468–10474. https://doi.org/10.1021/ic101502e.Search in Google Scholar
21. Bugaris, D. E., Malliakas, C. D., Bud’ko, S. L., Calta, N. P., Chung, D. Y., Kanatzidis, M. G. Inorg. Chem. 2017, 56, 14584–14595. https://doi.org/10.1021/acs.inorgchem.7b02389.Search in Google Scholar
22. Fukuhara, T., Sakamoto, I., Sato, H. J. Phys. Condens. Matter 1991, 3, 8917. https://doi.org/10.1088/0953-8984/3/45/014.Search in Google Scholar
23. Fukuhara, T., Iwakawa, S., Sato, H. J. Magn. Magn Mater. 1992, 104, 667–668. https://doi.org/10.1016/0304-8853(92)90975-T.Search in Google Scholar
24. Godart, C., Mazumdar, C., Dhar, S., Flandorfer, K., Nagarajan, R., Gupta, L., Vijayaraghavan, R. Europhys. Lett. 1994, 27, 215.10.1209/0295-5075/27/3/008Search in Google Scholar
25. Zumdick, M. F., Pöttgen, R. Z. Naturforsch. B Chem. Sci. 1999, 54, 863–869. https://doi.org/10.1515/znb-1999-0707.Search in Google Scholar
26. Koch, N. E., Strydom, A. M. J. Magn. Magn Mater. 2008, 320, 128–131. https://doi.org/10.1016/j.jmmm.2008.02.028.Search in Google Scholar
27. Heying, B., Kösters, J., Hoffmann, R. D., Heletta, L., Pöttgen, R. Z. Naturforsch. B Chem. Sci. 2017, 72, 753–758. https://doi.org/10.1515/znb-2017-0127.Search in Google Scholar
28. Gamza, M. B., Gumeniuk, R., Burkhardt, U., Schnelle, W., Rosner, H., Leithe-Jasper, A., Slebarski, A. Phys. Rev. B 2017, 95, 165142. https://doi.org/10.1103/PhysRevB.95.165142.Search in Google Scholar
29. Patil, N., Ramakrishnan, S. Phys. Rev. B 1999, 59, 12054–12063. https://doi.org/10.1103/PhysRevB.59.12054.Search in Google Scholar
30. Palenzona, A., Canepa, F. J. Less Common. Met. 1989, 155, L31–L33. https://doi.org/10.1016/0022-5088(89)90246-4.Search in Google Scholar
31. Okamoto, H. J. Phase Equil. 1991, 12, 253–254. https://doi.org/10.1007/BF02645731.Search in Google Scholar
32. Schwomma, O., Nowotny, H., Wittmann, A. Monatsh. Chem. 1964, 95, 1538–1543. https://doi.org/10.1007/bf00901709.Search in Google Scholar
33. Shevchenko, M. O., Berezutski, V. V., Ivanov, M. I., Kudin, V. G., Sudavtsova, V. S. J. Phase Equilibria Diffus. 2015, 36, 39–52. https://doi.org/10.1007/s11669-014-0353-3.Search in Google Scholar
34. Sheldrick, G. M. XPRER 6.14, Bruker Saint. BRUKER APEX 2016, 3.Search in Google Scholar
35. Sheldrick, G. M. Sadabs – Bruker Nonius Area Detector Scaling and Absorption Correction; Univesity of Göttingen: Germany, 2004.Search in Google Scholar
36. Sheldrick, G. M. Acta Crystallogr. 2015, C71, 3–8. https://doi.org/10.1107/S2053229614024218.Search in Google Scholar
37. Stoe Winxpow (Version 2.24). Stoe & Cie GmbH, Germany, Darmstadt, 2009.Search in Google Scholar
38. Rodriguez-Carvajal, J. Phys. B 1993, 192, 55–69.10.1016/0921-4526(93)90108-ISearch in Google Scholar
39. Roisnel, T., Rodriguez-Carvajal, J. Mater. Sci. Forum 2000, 118–123.10.4028/www.scientific.net/MSF.378-381.118Search in Google Scholar
40. Brandenburg, K. Diamond. Release 3.0; Crystal Impact Gmbh: Bonn, Germany, 2005.Search in Google Scholar
41. Nowotny, H. N., Schubert, K. Dettinger, U. Metallforschung 1946, 1, 137–145.10.1515/ijmr-1946-374-506Search in Google Scholar
42. Bryan, C., Mandrus, D. J. Alloys Compd. 1998, 281, 157–159. https://doi.org/10.1016/S0925-8388(98)00790-7.Search in Google Scholar
43. Spek, A. L. PLATON. Acta Crystallogr. A 2009, D65, 148–155. https://doi.org/10.1107/S090744490804362X.Search in Google Scholar
44. Eriksson, L., Lanner, J. Acta Crystallogr. 2001, E57, 185–186. https://doi.org/10.1107/S1600536801014246.Search in Google Scholar
45. Jensen, P., Kjekshus, A. J. Less Common. Met. 1967, 13, 357–359. https://doi.org/10.1016/0022-5088(67)90144-0.Search in Google Scholar
46. Soheilnia, N., Giraldi, J., Assoud, A., Zhang, H., Tritt, T., Kleinke, H. J. Alloys Compd. 2008, 448, 148–152. https://doi.org/10.1016/j.jallcom.2006.10.056.Search in Google Scholar
47. Emsley, J. The Elements; Clarendon Press: Oxford, 1991.Search in Google Scholar
48. Bärnighausen, H. Commun. Math. Chem. 1980, 9, 139–175.10.1007/BF01674443Search in Google Scholar
49. Müller, U. Z. Anorg. Allg. Chem. 2004, 630, 1519–1537. https://doi.org/10.1002/zaac.200400250.Search in Google Scholar
© 2021 Walter de Gruyter GmbH, Berlin/Boston
Articles in the same Issue
- Frontmatter
- In this issue
- Inorganic Crystal Structures (Original Papers)
- ErNi2.23Al2.77 and YbNi2.31Al2.69 – i3 superstructures of the CaCu5 type
- New compound Sm2Ru3Sn5 with a structure derived from Ru3Sn7
- Site preference and atomic ordering in the ternary Rh5Ga2As: first-principles calculations
- SmPt2In2 – a new ternary indide with a Pt–In polyanionic framework
- The order/disorder phase transition of hypophosphorous acid H3PO2
- KCu(SeO4)Cl(H2O)2, a first copper chloride selenate
- The germanides APtGe2 (A = Ca, Sr, Eu)
- Organic and Metalorganic Crystal Structures (Original Paper)
- Crystal structure analysis and supramolecular association in ethyl N-[amino(iminio)methyl]carbamate dichloride hemi-hydrate
Articles in the same Issue
- Frontmatter
- In this issue
- Inorganic Crystal Structures (Original Papers)
- ErNi2.23Al2.77 and YbNi2.31Al2.69 – i3 superstructures of the CaCu5 type
- New compound Sm2Ru3Sn5 with a structure derived from Ru3Sn7
- Site preference and atomic ordering in the ternary Rh5Ga2As: first-principles calculations
- SmPt2In2 – a new ternary indide with a Pt–In polyanionic framework
- The order/disorder phase transition of hypophosphorous acid H3PO2
- KCu(SeO4)Cl(H2O)2, a first copper chloride selenate
- The germanides APtGe2 (A = Ca, Sr, Eu)
- Organic and Metalorganic Crystal Structures (Original Paper)
- Crystal structure analysis and supramolecular association in ethyl N-[amino(iminio)methyl]carbamate dichloride hemi-hydrate