Abstract
The germanides APtGe2 (A = Ca, Sr, Eu) were synthesized from the elements in sealed tantalum ampoules in an induction furnace followed by annealing. The polycrystalline samples were characterized by powder X-ray diffraction (Guinier patterns). The structures of CaPtGe2 (CeRhSn2 type, Cmcm, a = 443.45(3), b = 1593.03(12), c = 886.15(6) pm, wR = 0.0464, 673 F2 values, 30 variables) and EuPt1.043(5)Ge1.957(5) (CeNiSi2 type, Cmcm, a = 445.23(4), b = 1752.5(2), c = 429.63(4) pm, wR = 0.0415, 389 F2 values, 19 variables) were refined from single crystal X-ray diffractometer data. One of the germanium site in EuPt1.043(5)Ge1.957(5) showed a small Ge/Pt mixed occupancy. SrPtGe2 (a = 451.13(6), b = 1764.8(2), c = 429.60(5) pm) is isotypic with EuPtGe2. The platinum atoms in both germanides have trigonal prismatic coordination: Pt@Ca4Ge2 and Pt@Eu4Ge2. The germanium substructures differ significantly: Ge2 dumb-bells with 246 and 262 pm Ge–Ge distances in CaPtGe2versus germanium zig-zag chains (253 pm Ge–Ge distances) and a distorted square net (309 pm Ge–Ge distances) in EuPtGe2. CaPtGe2 and SrPtGe2 are diamagnetic. EuPtGe2 is a Curie–Weiss paramagnet with an experimental magnetic moment of 7.88(1) µB Eu atom−1. The purely divalent character of europium is manifested by a single signal at δ = −11.38(1) mm s−1 in the 151Eu Mössbauer spectrum at 78 K. EuPtGe2 orders antiferromagnetically at TN = 5.4(1) K.
Acknowledgment
We thank Dipl.-Ing. J. Kösters for collecting the single crystal X-ray data.
Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.
Research funding: None declared.
Conflict of interest statement: The authors declare no conflicts of interest regarding this article.
References
1. Villars, P., Cenzual, K. Pearson’s Crystal Data: Crystal Structure Database for Inorganic Compounds; ASM International®: Materials Park, Ohio (USA), 2020.Search in Google Scholar
2. Bodak, O. I., Gladyshevskii, E. I. Sov. Phys. Crystallogr. 1970, 14, 859–862; https://doi.org/10.1002/maco.19700211015.Search in Google Scholar
3. Bodak, O. I., Marusin, E. P. Dopov. Akad. Nauk Ukr. RSR, Ser. A 1979, 1048–1050.Search in Google Scholar
4. Heying, B., Hoffmann, R.-D., Pöttgen, R. Z. Naturforsch. 2005, 60b, 491–494; https://doi.org/10.1515/znb-2005-0502.Search in Google Scholar
5. Pöttgen, R., Lukachuk, M., Hoffmann, R.-D. Z. Naturforsch. 2006, 221, 435–444; https://doi.org/10.1524/zkri.2006.221.5-7.435.Search in Google Scholar
6. Seidel, S., Pöttgen, R. Z. Naturforsch. 2021, 76b, 263–274; https://doi.org/10.1515/znb-2021-0049.Search in Google Scholar
7. Francois, M., Venturini, G., McRae, E., Malaman, B., Roques, B. J. Less Common. Met. 1987, 128, 249–257; https://doi.org/10.1016/0022-5088(87)90212-8.Search in Google Scholar
8. Yarmolyuk, Y. P., Sikiritsa, M., Akselrud, L. G., Lysenko, L. A., Gladyshevskii, E. I. Sov. Phys. Crystallogr. 1982, 27, 652–653; https://doi.org/10.1080/00107530.1982.10745710.Search in Google Scholar
9. Bodak, O. I., Marusin, E. P., Bruskov, V. A. Sov. Phys. Crystallogr. 1980, 25, 355–356.Search in Google Scholar
10. Zaremba, V. I., Kalychak, Ya. M., Dubenskiy, V. P., Hoffmann, R.-D., Pöttgen, R. J. Solid State Chem. 2000, 152, 560–567; https://doi.org/10.1006/jssc.2000.8731.Search in Google Scholar
11. Niepmann, D., Pöttgen, R., Künnen, B., Kotzyba, G., Rosenhahn, C., Mosel, B. D. Chem. Mater. 1999, 11, 1597–1602; https://doi.org/10.1021/cm991006u.Search in Google Scholar
12. Tsokol, A. O., Bodak, O. I., Marusin, E. P., Zavodnik, V. E. Sov. Phys. Crystallogr. 1988, 33, 202–203; https://doi.org/10.1016/s0166-9834(00)80925-2.Search in Google Scholar
13. Pöttgen, R., Witte, A. M., Jeitschko, W., Ebel, T. J. Solid State Chem. 1995, 119, 324–330; https://doi.org/10.1016/0022-4596(95)80048-t.Search in Google Scholar
14. Hoffmann, R.-D., Wachtmann, K. H., Ebel, T., Jeitschko, W. J. Solid State Chem. 1995, 118, 158–162; https://doi.org/10.1006/jssc.1995.1325.Search in Google Scholar
15. Meyer, M., Venturini, G., Malaman, B., Steinmetz, J., Roques, B. Mater. Res. Bull. 1983, 18, 1529–1535; https://doi.org/10.1016/0025-5408(83)90194-0.Search in Google Scholar
16. Zaremba, V. I., Hlukhyy, V., Pöttgen, R. Z. Anorg. Allg. Chem. 2005, 631, 327–331; https://doi.org/10.1002/zaac.200400142.Search in Google Scholar
17. Hoffmann, R.-D., Pöttgen, R. Z. Anorg. Allg. Chem. 2000, 626, 28–35; https://doi.org/10.1002/(sici)1521-3749(200001)626:1<28::aid-zaac28>3.0.co;2-t.10.1002/(SICI)1521-3749(200001)626:1<28::AID-ZAAC28>3.0.CO;2-TSearch in Google Scholar
18. Andersson, S. Angew. Chem. 1983, 95, 67–80; https://doi.org/10.1002/ange.19830950133.Search in Google Scholar
19. Parthé, E., Chabot, B., Cenzual, K. Chimia 1985, 39, 164–174.Search in Google Scholar
20. Klenner, S., Stegemann, F., Pöttgen, R. Z. Anorg. Allg. Chem. 2020, 646, 106–113; https://doi.org/10.1002/zaac.201900167.Search in Google Scholar
21. Pöttgen, R., Gulden, Th., Simon, A. GIT Labor-Fachzeitschrift 1999, 43, 133–136.Search in Google Scholar
22. Pöttgen, R., Lang, A., Hoffmann, R.-D., Künnen, B., Kotzyba, G., Müllmann, R., Mosel, B. D., Rosenhahn, C. Z. Kristallogr. 1999, 214, 143–150; https://doi.org/10.1524/zkri.1999.214.3.143.Search in Google Scholar
23. Hlukhyy, V., Eck, S., Fässler, T. F. Inorg. Chem. 2006, 45, 7408–7416; https://doi.org/10.1021/ic060613y.Search in Google Scholar
24. Oniskovets, B. D., Bodak, O. I., Goral, O. E. Dopov. Akad. Nauk Ukr. RSR, Ser. B 1987, 8, 46–48.Search in Google Scholar
25. Pöttgen, R., Simon, A. Z. Anorg. Allg. Chem. 1996, 622, 779–784.10.1002/zaac.19966220505Search in Google Scholar
26. Yvon, K., Jeitschko, W., Parthé, E. J. Appl. Crystallogr. 1977, 10, 73–74; https://doi.org/10.1107/s0021889877012898.Search in Google Scholar
27. OriginLab Corp. OriginPro 2016G (version 9.3.2.303), 2016.Search in Google Scholar
28. Corel Corporation. CorelDRAW Graphics Suite 2017 (version 19.0.0.328), 2017.Search in Google Scholar
29. Long, G. J., Cranshaw, T. E., Longworth, G. Moessbauer Eff. Ref. Data J. 1983, 6, 42–49.Search in Google Scholar
30. Brand, R. A. WinNormos for Igor6 (version for Igor 6.2 or above: 22/02/2017); Universität Duisburg: Duisburg (Germany), 2017.Search in Google Scholar
31. Palatinus, L., Chapuis, G. J. Appl. Crystallogr. 2007, 40, 786–790; https://doi.org/10.1107/s0021889807029238.Search in Google Scholar
32. Petříček, V., Dušek, M., Palatinus, L. JANA 2006. The Crystallographic Computing System; Institute of Physics: Praha, Czech Republic, 2006.Search in Google Scholar
33. Petříček, V., Dušek, M., Palatinus, L. Z. Kristallogr. 2014, 229, 345–352; https://doi.org/10.1016/b978-0-12-415817-7.00037-2.Search in Google Scholar
34. Gelato, L. M., Parthé, E. J. Appl. Crystallogr. 1987, 20, 139–143; https://doi.org/10.1107/s0021889887086965.Search in Google Scholar
35. Parthé, E., Gelato, L., Chabot, B., Penzo, M., Cenzual, K., Gladyshevskii, R. TYPIX–Standardized Data and Crystal Chemical Characterization of Inorganic Structure Types. Gmelin Handbook of Inorganic and Organometallic Chemistry, 8th ed.; Springer: Berlin, 1993.10.1007/978-3-662-10641-9Search in Google Scholar
36. Salamakha, P. S. Crystal structures and crystal chemistry of ternary rare-earth germanides. In Handbook on the Physics and Chemistry of Rare Earths; Gschneidner, K. A. Jr., Eyring, L., Eds. Elsevier Science: Amsterdam, Vol. 27, 1999; pp. 225–338.10.1016/S0168-1273(99)27005-5Search in Google Scholar
37. Eisenmann, B., Schäfer, H. Z. Naturforsch. 1974, 29b, 460–463; https://doi.org/10.1515/znb-1974-7-802.Search in Google Scholar
38. Leon-Escamilla, E. A., Corbett, J. D. J. Solid State Chem. 2001, 159, 149–162; https://doi.org/10.1006/jssc.2001.9144.Search in Google Scholar
39. Emsley, J. The Elements; Oxford University Press: Oxford, 1999.Search in Google Scholar
40. Hoffmann, R.-D., Pöttgen, R., Lander, G. H., Rebizant, J. Solid State Sci. 2001, 3, 697–703; https://doi.org/10.1016/s1293-2558(01)01174-8.Search in Google Scholar
41. Rodewald, U. Ch., Heying, B., Hoffmann, R.-D., Niepmann, D., Pöttgen, R. Z. Naturforsch. 2009, 64b, 383–387; https://doi.org/10.1515/znb-2009-0404.Search in Google Scholar
42. Gladyshevskii, E. I., Uhryn, N. S. Dopov. Akad. Nauk. Ukr. RSR 1965, 1326–1329.Search in Google Scholar
43. Imre, A., Hellmann, A., Mewis, A. Z. Anorg. Allg. Chem. 2006, 632, 2217–2221; https://doi.org/10.1002/zaac.200600120.Search in Google Scholar
44. Demchyna, R., Prots, Yu., Schnelle, W., Burkhardt, U., Schwarz, U. Z. Kristallogr. N. Cryst. Struct. 2006, 221, 109–111; https://doi.org/10.1524/ncrs.2006.221.14.109.Search in Google Scholar
45. Sebastian, C. P., Pöttgen, R. Monatsh. Chem. 2007, 138, 381–388; https://doi.org/10.1007/s00706-007-0597-2.Search in Google Scholar
46. Dörrscheidt, W., Savelsberg, G., Stöhr, J., Schäfer, H. J. Less Common. Met. 1982, 83, 269–278; https://doi.org/10.1016/0022-5088(82)90277-6.Search in Google Scholar
47. Méot-Meyer, M., Venturini, G., Malaman, B., Roques, B. Mater. Res. Bull. 1985, 20, 1515–1521; https://doi.org/10.1016/0025-5408(85)90169-2.Search in Google Scholar
48. François, M., Venturini, G., Malaman, B., Roques, B. J. Less Common. Met. 1990, 160, 197–213; https://doi.org/10.1016/0022-5088(90)90381-s.Search in Google Scholar
49. Venturini, G., François, M., Malaman, B., Roques, B. J. Less Common. Met. 1990, 160, 215–228; https://doi.org/10.1016/0022-5088(90)90382-t.Search in Google Scholar
50. Lueken, H. Magnetochemie; Teubner: Stuttgart, 1999.10.1007/978-3-322-80118-0Search in Google Scholar
51. Bednarchuk, O., Ģagor, A., Kaczorowski, D. J. Alloys Compd. 2015, 622, 432–439; https://doi.org/10.1016/j.jallcom.2014.10.087.Search in Google Scholar
52. Das, I., Sampathkumaran, E. V., Nagarajan, R., Vijayaraghavan, R. Phys. Rev. B 1991, 43, 13159–13163; https://doi.org/10.1103/physrevb.43.13159.Search in Google Scholar PubMed
53. Pöttgen, R., Kremer, R. K., Schnelle, W., Müllmann, R., Mosel, B. D. J. Mater. Chem. 1996, 6, 635–638; https://doi.org/10.1039/jm9960600635.Search in Google Scholar
54. Kumar, N., Kumar Das, P., Kulkarni, R., Thamizhavel, A., Dhar, S. K., Bonville, P. J. Phys. Condens. Matter 2012, 24, 036005; https://doi.org/10.1088/0953-8984/24/3/036005.Search in Google Scholar PubMed
55. Pöttgen, R., Johrendt, D. Chem. Mater. 2000, 12, 875–897; https://doi.org/10.1021/cm991183v.Search in Google Scholar
56. Müllmann, R., Mosel, B. D., Eckert, H., Kotzyba, G., Pöttgen, R. J. Solid State Chem. 1998, 137, 174–180; https://doi.org/10.1006/jssc.1998.7750.Search in Google Scholar
57. Müllmann, R., Ernet, U., Mosel, B. D., Eckert, H., Kremer, R. K., Hoffmann, R.-D., Pöttgen, R. J. Mater. Chem. 2001, 11, 1133–1140; https://doi.org/10.1039/b100055l.Search in Google Scholar
© 2021 Walter de Gruyter GmbH, Berlin/Boston
Articles in the same Issue
- Frontmatter
- In this issue
- Inorganic Crystal Structures (Original Papers)
- ErNi2.23Al2.77 and YbNi2.31Al2.69 – i3 superstructures of the CaCu5 type
- New compound Sm2Ru3Sn5 with a structure derived from Ru3Sn7
- Site preference and atomic ordering in the ternary Rh5Ga2As: first-principles calculations
- SmPt2In2 – a new ternary indide with a Pt–In polyanionic framework
- The order/disorder phase transition of hypophosphorous acid H3PO2
- KCu(SeO4)Cl(H2O)2, a first copper chloride selenate
- The germanides APtGe2 (A = Ca, Sr, Eu)
- Organic and Metalorganic Crystal Structures (Original Paper)
- Crystal structure analysis and supramolecular association in ethyl N-[amino(iminio)methyl]carbamate dichloride hemi-hydrate
Articles in the same Issue
- Frontmatter
- In this issue
- Inorganic Crystal Structures (Original Papers)
- ErNi2.23Al2.77 and YbNi2.31Al2.69 – i3 superstructures of the CaCu5 type
- New compound Sm2Ru3Sn5 with a structure derived from Ru3Sn7
- Site preference and atomic ordering in the ternary Rh5Ga2As: first-principles calculations
- SmPt2In2 – a new ternary indide with a Pt–In polyanionic framework
- The order/disorder phase transition of hypophosphorous acid H3PO2
- KCu(SeO4)Cl(H2O)2, a first copper chloride selenate
- The germanides APtGe2 (A = Ca, Sr, Eu)
- Organic and Metalorganic Crystal Structures (Original Paper)
- Crystal structure analysis and supramolecular association in ethyl N-[amino(iminio)methyl]carbamate dichloride hemi-hydrate