Home Physical Sciences The germanides APtGe2 (A = Ca, Sr, Eu)
Article
Licensed
Unlicensed Requires Authentication

The germanides APtGe2 (A = Ca, Sr, Eu)

  • Steffen Klenner , Maximilian Kai Reimann and Rainer Pöttgen EMAIL logo
Published/Copyright: July 1, 2021

Abstract

The germanides APtGe2 (A = Ca, Sr, Eu) were synthesized from the elements in sealed tantalum ampoules in an induction furnace followed by annealing. The polycrystalline samples were characterized by powder X-ray diffraction (Guinier patterns). The structures of CaPtGe2 (CeRhSn2 type, Cmcm, a = 443.45(3), b = 1593.03(12), c = 886.15(6) pm, wR = 0.0464, 673 F2 values, 30 variables) and EuPt1.043(5)Ge1.957(5) (CeNiSi2 type, Cmcm, a = 445.23(4), b = 1752.5(2), c = 429.63(4) pm, wR = 0.0415, 389 F2 values, 19 variables) were refined from single crystal X-ray diffractometer data. One of the germanium site in EuPt1.043(5)Ge1.957(5) showed a small Ge/Pt mixed occupancy. SrPtGe2 (a = 451.13(6), b = 1764.8(2), c = 429.60(5) pm) is isotypic with EuPtGe2. The platinum atoms in both germanides have trigonal prismatic coordination: Pt@Ca4Ge2 and Pt@Eu4Ge2. The germanium substructures differ significantly: Ge2 dumb-bells with 246 and 262 pm Ge–Ge distances in CaPtGe2versus germanium zig-zag chains (253 pm Ge–Ge distances) and a distorted square net (309 pm Ge–Ge distances) in EuPtGe2. CaPtGe2 and SrPtGe2 are diamagnetic. EuPtGe2 is a Curie–Weiss paramagnet with an experimental magnetic moment of 7.88(1) µB Eu atom−1. The purely divalent character of europium is manifested by a single signal at δ = −11.38(1) mm s−1 in the 151Eu Mössbauer spectrum at 78 K. EuPtGe2 orders antiferromagnetically at TN = 5.4(1) K.


Corresponding author: Rainer Pöttgen, Institut für Anorganische und Analytische Chemie, Universität Münster, Corrensstrasse 30, 48149Münster, Germany, E-mail:

Acknowledgment

We thank Dipl.-Ing. J. Kösters for collecting the single crystal X-ray data.

  1. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: None declared.

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

1. Villars, P., Cenzual, K. Pearson’s Crystal Data: Crystal Structure Database for Inorganic Compounds; ASM International®: Materials Park, Ohio (USA), 2020.Search in Google Scholar

2. Bodak, O. I., Gladyshevskii, E. I. Sov. Phys. Crystallogr. 1970, 14, 859–862; https://doi.org/10.1002/maco.19700211015.Search in Google Scholar

3. Bodak, O. I., Marusin, E. P. Dopov. Akad. Nauk Ukr. RSR, Ser. A 1979, 1048–1050.Search in Google Scholar

4. Heying, B., Hoffmann, R.-D., Pöttgen, R. Z. Naturforsch. 2005, 60b, 491–494; https://doi.org/10.1515/znb-2005-0502.Search in Google Scholar

5. Pöttgen, R., Lukachuk, M., Hoffmann, R.-D. Z. Naturforsch. 2006, 221, 435–444; https://doi.org/10.1524/zkri.2006.221.5-7.435.Search in Google Scholar

6. Seidel, S., Pöttgen, R. Z. Naturforsch. 2021, 76b, 263–274; https://doi.org/10.1515/znb-2021-0049.Search in Google Scholar

7. Francois, M., Venturini, G., McRae, E., Malaman, B., Roques, B. J. Less Common. Met. 1987, 128, 249–257; https://doi.org/10.1016/0022-5088(87)90212-8.Search in Google Scholar

8. Yarmolyuk, Y. P., Sikiritsa, M., Akselrud, L. G., Lysenko, L. A., Gladyshevskii, E. I. Sov. Phys. Crystallogr. 1982, 27, 652–653; https://doi.org/10.1080/00107530.1982.10745710.Search in Google Scholar

9. Bodak, O. I., Marusin, E. P., Bruskov, V. A. Sov. Phys. Crystallogr. 1980, 25, 355–356.Search in Google Scholar

10. Zaremba, V. I., Kalychak, Ya. M., Dubenskiy, V. P., Hoffmann, R.-D., Pöttgen, R. J. Solid State Chem. 2000, 152, 560–567; https://doi.org/10.1006/jssc.2000.8731.Search in Google Scholar

11. Niepmann, D., Pöttgen, R., Künnen, B., Kotzyba, G., Rosenhahn, C., Mosel, B. D. Chem. Mater. 1999, 11, 1597–1602; https://doi.org/10.1021/cm991006u.Search in Google Scholar

12. Tsokol, A. O., Bodak, O. I., Marusin, E. P., Zavodnik, V. E. Sov. Phys. Crystallogr. 1988, 33, 202–203; https://doi.org/10.1016/s0166-9834(00)80925-2.Search in Google Scholar

13. Pöttgen, R., Witte, A. M., Jeitschko, W., Ebel, T. J. Solid State Chem. 1995, 119, 324–330; https://doi.org/10.1016/0022-4596(95)80048-t.Search in Google Scholar

14. Hoffmann, R.-D., Wachtmann, K. H., Ebel, T., Jeitschko, W. J. Solid State Chem. 1995, 118, 158–162; https://doi.org/10.1006/jssc.1995.1325.Search in Google Scholar

15. Meyer, M., Venturini, G., Malaman, B., Steinmetz, J., Roques, B. Mater. Res. Bull. 1983, 18, 1529–1535; https://doi.org/10.1016/0025-5408(83)90194-0.Search in Google Scholar

16. Zaremba, V. I., Hlukhyy, V., Pöttgen, R. Z. Anorg. Allg. Chem. 2005, 631, 327–331; https://doi.org/10.1002/zaac.200400142.Search in Google Scholar

17. Hoffmann, R.-D., Pöttgen, R. Z. Anorg. Allg. Chem. 2000, 626, 28–35; https://doi.org/10.1002/(sici)1521-3749(200001)626:1<28::aid-zaac28>3.0.co;2-t.10.1002/(SICI)1521-3749(200001)626:1<28::AID-ZAAC28>3.0.CO;2-TSearch in Google Scholar

18. Andersson, S. Angew. Chem. 1983, 95, 67–80; https://doi.org/10.1002/ange.19830950133.Search in Google Scholar

19. Parthé, E., Chabot, B., Cenzual, K. Chimia 1985, 39, 164–174.Search in Google Scholar

20. Klenner, S., Stegemann, F., Pöttgen, R. Z. Anorg. Allg. Chem. 2020, 646, 106–113; https://doi.org/10.1002/zaac.201900167.Search in Google Scholar

21. Pöttgen, R., Gulden, Th., Simon, A. GIT Labor-Fachzeitschrift 1999, 43, 133–136.Search in Google Scholar

22. Pöttgen, R., Lang, A., Hoffmann, R.-D., Künnen, B., Kotzyba, G., Müllmann, R., Mosel, B. D., Rosenhahn, C. Z. Kristallogr. 1999, 214, 143–150; https://doi.org/10.1524/zkri.1999.214.3.143.Search in Google Scholar

23. Hlukhyy, V., Eck, S., Fässler, T. F. Inorg. Chem. 2006, 45, 7408–7416; https://doi.org/10.1021/ic060613y.Search in Google Scholar

24. Oniskovets, B. D., Bodak, O. I., Goral, O. E. Dopov. Akad. Nauk Ukr. RSR, Ser. B 1987, 8, 46–48.Search in Google Scholar

25. Pöttgen, R., Simon, A. Z. Anorg. Allg. Chem. 1996, 622, 779–784.10.1002/zaac.19966220505Search in Google Scholar

26. Yvon, K., Jeitschko, W., Parthé, E. J. Appl. Crystallogr. 1977, 10, 73–74; https://doi.org/10.1107/s0021889877012898.Search in Google Scholar

27. OriginLab Corp. OriginPro 2016G (version 9.3.2.303), 2016.Search in Google Scholar

28. Corel Corporation. CorelDRAW Graphics Suite 2017 (version 19.0.0.328), 2017.Search in Google Scholar

29. Long, G. J., Cranshaw, T. E., Longworth, G. Moessbauer Eff. Ref. Data J. 1983, 6, 42–49.Search in Google Scholar

30. Brand, R. A. WinNormos for Igor6 (version for Igor 6.2 or above: 22/02/2017); Universität Duisburg: Duisburg (Germany), 2017.Search in Google Scholar

31. Palatinus, L., Chapuis, G. J. Appl. Crystallogr. 2007, 40, 786–790; https://doi.org/10.1107/s0021889807029238.Search in Google Scholar

32. Petříček, V., Dušek, M., Palatinus, L. JANA 2006. The Crystallographic Computing System; Institute of Physics: Praha, Czech Republic, 2006.Search in Google Scholar

33. Petříček, V., Dušek, M., Palatinus, L. Z. Kristallogr. 2014, 229, 345–352; https://doi.org/10.1016/b978-0-12-415817-7.00037-2.Search in Google Scholar

34. Gelato, L. M., Parthé, E. J. Appl. Crystallogr. 1987, 20, 139–143; https://doi.org/10.1107/s0021889887086965.Search in Google Scholar

35. Parthé, E., Gelato, L., Chabot, B., Penzo, M., Cenzual, K., Gladyshevskii, R. TYPIX–Standardized Data and Crystal Chemical Characterization of Inorganic Structure Types. Gmelin Handbook of Inorganic and Organometallic Chemistry, 8th ed.; Springer: Berlin, 1993.10.1007/978-3-662-10641-9Search in Google Scholar

36. Salamakha, P. S. Crystal structures and crystal chemistry of ternary rare-earth germanides. In Handbook on the Physics and Chemistry of Rare Earths; Gschneidner, K. A. Jr., Eyring, L., Eds. Elsevier Science: Amsterdam, Vol. 27, 1999; pp. 225–338.10.1016/S0168-1273(99)27005-5Search in Google Scholar

37. Eisenmann, B., Schäfer, H. Z. Naturforsch. 1974, 29b, 460–463; https://doi.org/10.1515/znb-1974-7-802.Search in Google Scholar

38. Leon-Escamilla, E. A., Corbett, J. D. J. Solid State Chem. 2001, 159, 149–162; https://doi.org/10.1006/jssc.2001.9144.Search in Google Scholar

39. Emsley, J. The Elements; Oxford University Press: Oxford, 1999.Search in Google Scholar

40. Hoffmann, R.-D., Pöttgen, R., Lander, G. H., Rebizant, J. Solid State Sci. 2001, 3, 697–703; https://doi.org/10.1016/s1293-2558(01)01174-8.Search in Google Scholar

41. Rodewald, U. Ch., Heying, B., Hoffmann, R.-D., Niepmann, D., Pöttgen, R. Z. Naturforsch. 2009, 64b, 383–387; https://doi.org/10.1515/znb-2009-0404.Search in Google Scholar

42. Gladyshevskii, E. I., Uhryn, N. S. Dopov. Akad. Nauk. Ukr. RSR 1965, 1326–1329.Search in Google Scholar

43. Imre, A., Hellmann, A., Mewis, A. Z. Anorg. Allg. Chem. 2006, 632, 2217–2221; https://doi.org/10.1002/zaac.200600120.Search in Google Scholar

44. Demchyna, R., Prots, Yu., Schnelle, W., Burkhardt, U., Schwarz, U. Z. Kristallogr. N. Cryst. Struct. 2006, 221, 109–111; https://doi.org/10.1524/ncrs.2006.221.14.109.Search in Google Scholar

45. Sebastian, C. P., Pöttgen, R. Monatsh. Chem. 2007, 138, 381–388; https://doi.org/10.1007/s00706-007-0597-2.Search in Google Scholar

46. Dörrscheidt, W., Savelsberg, G., Stöhr, J., Schäfer, H. J. Less Common. Met. 1982, 83, 269–278; https://doi.org/10.1016/0022-5088(82)90277-6.Search in Google Scholar

47. Méot-Meyer, M., Venturini, G., Malaman, B., Roques, B. Mater. Res. Bull. 1985, 20, 1515–1521; https://doi.org/10.1016/0025-5408(85)90169-2.Search in Google Scholar

48. François, M., Venturini, G., Malaman, B., Roques, B. J. Less Common. Met. 1990, 160, 197–213; https://doi.org/10.1016/0022-5088(90)90381-s.Search in Google Scholar

49. Venturini, G., François, M., Malaman, B., Roques, B. J. Less Common. Met. 1990, 160, 215–228; https://doi.org/10.1016/0022-5088(90)90382-t.Search in Google Scholar

50. Lueken, H. Magnetochemie; Teubner: Stuttgart, 1999.10.1007/978-3-322-80118-0Search in Google Scholar

51. Bednarchuk, O., Ģagor, A., Kaczorowski, D. J. Alloys Compd. 2015, 622, 432–439; https://doi.org/10.1016/j.jallcom.2014.10.087.Search in Google Scholar

52. Das, I., Sampathkumaran, E. V., Nagarajan, R., Vijayaraghavan, R. Phys. Rev. B 1991, 43, 13159–13163; https://doi.org/10.1103/physrevb.43.13159.Search in Google Scholar PubMed

53. Pöttgen, R., Kremer, R. K., Schnelle, W., Müllmann, R., Mosel, B. D. J. Mater. Chem. 1996, 6, 635–638; https://doi.org/10.1039/jm9960600635.Search in Google Scholar

54. Kumar, N., Kumar Das, P., Kulkarni, R., Thamizhavel, A., Dhar, S. K., Bonville, P. J. Phys. Condens. Matter 2012, 24, 036005; https://doi.org/10.1088/0953-8984/24/3/036005.Search in Google Scholar PubMed

55. Pöttgen, R., Johrendt, D. Chem. Mater. 2000, 12, 875–897; https://doi.org/10.1021/cm991183v.Search in Google Scholar

56. Müllmann, R., Mosel, B. D., Eckert, H., Kotzyba, G., Pöttgen, R. J. Solid State Chem. 1998, 137, 174–180; https://doi.org/10.1006/jssc.1998.7750.Search in Google Scholar

57. Müllmann, R., Ernet, U., Mosel, B. D., Eckert, H., Kremer, R. K., Hoffmann, R.-D., Pöttgen, R. J. Mater. Chem. 2001, 11, 1133–1140; https://doi.org/10.1039/b100055l.Search in Google Scholar

Received: 2021-05-04
Accepted: 2021-06-16
Published Online: 2021-07-01
Published in Print: 2021-06-25

© 2021 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 5.12.2025 from https://www.degruyterbrill.com/document/doi/10.1515/zkri-2021-2026/html
Scroll to top button