Home Physical Sciences KCu(SeO4)Cl(H2O)2, a first copper chloride selenate
Article
Licensed
Unlicensed Requires Authentication

KCu(SeO4)Cl(H2O)2, a first copper chloride selenate

  • Oleg I. Siidra EMAIL logo and Mishel R. Markovski
Published/Copyright: June 24, 2021

Abstract

A first copper chloride selenate was obtained upon attempted preparation of a selenate analog of chlorothionite. The new compound is monoclinic, P21/c, a = 7.1833(5) Å, b = 11.7784(8) Å, c = 8.2419(6) Å, β = 91.083(2)°, V = 697.20(8) Å3, R1 = 0.033. KCu(SeO4)Cl(H2O)2 has no structural analogs and adds to the small family of transition metal selenate halides. The CuO3(H2O)2Cl strongly distorted octahedra share common O–O edges thus forming dimeric units with a Cu–Cu distance of 3.49 Å. Dimeric units and SeO4 tetrahedra in KCu(SeO4)Cl(H2O)2 share common O atoms to produce unique [Cu(SeO4)Cl(H2O)2] chains. We discuss further perspectives of the selenate halide family and expected differences in crystal chemistry of sulfate and selenate halides.


Corresponding author: Oleg I. Siidra, Department of Crystallography, St. Petersburg State University, University Emb. 7/9, 199034, St. Petersburg, Russia; and Kola Science Center, Russian Academy of Sciences, Apatity, 184200, Murmansk Region, Russia, E-mail:

Award Identifier / Grant number: 19-05-00413

Acknowledgment

We are grateful to two anonymous reviewers for valuable comments. Technical support by the SPbSU Resource Centers is gratefully acknowledged.

  1. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: This work was financially supported by the Russian Foundation for Basic Research, Grant No. 19-05-00413.

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

1. Pekov, I. V., Zubkova, N. V., Pushcharovsky, D. Y. Copper minerals from volcanic exhalations – a unique family of natural compounds: crystal-chemical review. Acta Crystallogr. 2018, B74, 502–518; https://doi.org/10.1107/s2052520618014403.Search in Google Scholar

2. Kikuchi, H., Kunieda, K., Fujii, Y., Astuti, F., Sari, D. P., Watanabe, I. Successive magnetic phase transition of the new frustrated compound KCu3OCl(SO4)2. RIKEN Accel. Prog. Rep. 2017, 50, 236.Search in Google Scholar

3. Hälg, M., Lorenz, W. E. A., Povarov, K. Y., Månsson, M., Skourski, Y., Zheludev, A. Quantum spin chains with frustration due to Dzyaloshinskii-Moriya interactions. Phys. Rev. 2014, B90, 174413; https://doi.org/10.1103/physrevb.90.174413.Search in Google Scholar

4. Fujihala, M., Mitsuda, S., Mole, R. A., Yu, D. H., Watanabe, I., Yano, S., Kuwai, T., Sagayama, H., Kouchi, T., Kamebuchi, H., Tadokoro, M. Spin dynamics and magnetic ordering in the quasi-one-dimensional S=1/2 antiferromagnet Na2CuSO4Cl2. Phys. Rev. 2020, B101, 024410.10.1103/PhysRevB.101.024410Search in Google Scholar

5. Giacovazzo, C., Scandale, E., Scordari, F. The crystal structure of chlorothionite CuK2Cl2SO4. Z. Kristallogr. 1976, 144, 226; https://doi.org/10.1524/zkri.1976.144.1-6.226.Search in Google Scholar

6. Pekov, I. V., Siidra, O. I., Chukanov, N. V., Yapaskurt, V. O., Belakovskiy, D. I., Murashko, M. N., Sidorov, E. G. Kaliochalcite, KCu2(SO4)2х[(OH)(H2O)], a new tsumcorite-group mineral from the Tolbachik volcano, Kamchatka, Russia. Eur. J. Mineral 2014, 26, 597; https://doi.org/10.1127/0935-1221/2014/0026-2394.Search in Google Scholar

7. Giester, G., Zemann, J. The crystal structure of the natrochalcite-type compounds Me+Cu2(OH)(ZO4)2H2O [Me+= Na, K, Rb; Z= S, Se], with special reference to the hydrogen bonds. Z. Kristallogr. 1987, 179, 431–442; https://doi.org/10.1524/zkri.1987.179.1-4.431.Search in Google Scholar

8. Simmons, C. J., Stratemeier, H., Hitchman, M. A., Riley, M. J. Influence of lattice interactions on the Jahn-Teller distortion of the [Cu(H2O)6]2+ ion: dependence of the crystal structure of K2[Cu(H2O)6](SO4)2x(SeO4)2-2x upon the sulfate/selenate ratio. Inorg. Chem. 2006, 45, 1021–1031; https://doi.org/10.1021/ic050790j.Search in Google Scholar PubMed

9. Bruker. AXS Apex2 (version 2014.11-0): Madison, Wisconsin, USA, 2014.Search in Google Scholar

10. Sheldrick, G. M. Crystal structure refinement with SHELXL. Acta Crystallogr. 2015, A71, 3–8; https://doi.org/10.1107/s2053229614024218.Search in Google Scholar

11. Tuck, D. G., Cotton, F. A., Eds. Progress in Inorganic Chemistry; Wiley, 5, 2009; pp. 161–191.Search in Google Scholar

12. Krivovichev, S. V., Gorelova, L. A. Se-Cl interactions in selenite chlorides: a theoretical study. Crystals 2018, 8, 193; https://doi.org/10.3390/cryst8050193.Search in Google Scholar

13. Weil, M., Breitinger, D. K., Liehr, G., Zuerbig, J. Structural investigations and thermal behaviour of mercury(II) sulfito complexes. Z. Anorg. Allg. Chem. 2007, 633, 429–434; https://doi.org/10.1002/zaac.200600313.Search in Google Scholar

14. Weil, M., Baumann, S., Breitinger, D. K. Structural studies of new sulfito mercurates(II) with general formula xM[XHgSO3] ·yHgX2·zMX·nH2O (M = NH4, K; X = Cl, Br). Z. Anorg. Allg. Chem. 2008, 634, 1742–1748; https://doi.org/10.1002/zaac.200800159.Search in Google Scholar

15. Skakle, J. M. S., Fletcher, J. G., West, A. R. The crystal structures of the potassium oxyfluorides, K3SeO4F and K3PO3F2. An. Quim. 1996, 92, 358–361.Search in Google Scholar

16. Pitzschke, D., Curda, J., Cakmak, G., Jansen, M. Ag4I2SeO4 and Ag3ITeO4 – two new silver solid electrolytes. Z. Anorg. Allg. Chem. 2008, 634, 1071–1076; https://doi.org/10.1002/zaac.200800027.Search in Google Scholar

17. Pitzschke, D., Curda, J., Cakmak, G., Jansen, M. Ag9I3(SeO4)2(IO3)2 – synthesis, crystal structure, and ionic conductivity. Z. Anorg. Allg. Chem. 2008, 634, 1907–1910; https://doi.org/10.1002/zaac.200800258.Search in Google Scholar

18. Melot, B. C., Chotard, J.-N., Rousse, G., Ati, M., Reynaud, M., Tarascon, J-M. Synthesis, structure, and magnetic properties of the NaCoXO4F·2H2O phases where X = S and Se. Inorg. Chem. 2011, 50, 7662–7668; https://doi.org/10.1021/ic200700r.Search in Google Scholar

19. Siidra, O. I., Nazarchuk, E. V., Zaitsev, A. N., Shilovskikh, V., Majzlanite, V. K2Na(ZnNa)Ca(SO4)4, a new anhydrous sulfate mineral with complex cation substitutions from Tolbachik volcano. Miner. Mag. 2020, 84, 153–158; https://doi.org/10.1180/mgm.2019.68.Search in Google Scholar

20. Peytavin, S., Philippot, E., Maurin, M. Etude structurale du sel double dihydrate: Na2Cu(SeO4)2.2H2O. J. Solid State Chem. 1974, 9, 63–68; https://doi.org/10.1016/0022-4596(74)90055-3.Search in Google Scholar

21. Fleck, M., Giester, G. Crystal structures of the new double salts K2Cd3(SO4)4·5H2O, Rb2Cu3(SO4)3(OH)2 and Cs2Cu(SeO4)2·4H2O. J. Alloys Compd. 2003, 351, 77–83; https://doi.org/10.1016/s0925-8388(02)01046-0.Search in Google Scholar

22. Snyman, H. C., Pistorius, C. W. F. T. Polymorphism in the selenates of Mg, Mn, Co and Cu at high pressures. Z. Kristallogr. 1964, 120, 317–322; https://doi.org/10.1524/zkri.1964.120.4-5.317.Search in Google Scholar

23. Rich, R. L. Inorganic Reactions in Water, 1st ed.; Springer-Verlag: Berlin – Heidelberg, 2007; p. 438.10.1007/978-3-540-73962-3Search in Google Scholar


Supplementary Material

The online version of this article offers supplementary material (https://doi.org/10.1515/zkri-2021-2020).


Received: 2021-03-30
Accepted: 2021-06-14
Published Online: 2021-06-24
Published in Print: 2021-06-25

© 2021 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 5.12.2025 from https://www.degruyterbrill.com/document/doi/10.1515/zkri-2021-2020/html
Scroll to top button