Home Physical Sciences Research progress of catalytic oxidation of volatile organic compounds over Mn-based catalysts – a review
Article
Licensed
Unlicensed Requires Authentication

Research progress of catalytic oxidation of volatile organic compounds over Mn-based catalysts – a review

  • Chao Sui ORCID logo EMAIL logo , Shiping Zeng ORCID logo , Xiangyu Ma , Yue Zhang , JingXin Zhang and XiaoMei Xie
Published/Copyright: February 10, 2022

Abstract

With the rapid development of urbanization and industrialization, environmental pollution has become more severe. Volatile organic compounds (VOCs) could be originated from the following sources: domestic, mobile and industrial sources. As important air pollutants, VOCs could cause serious harm to the environment and human health. Therefore, removing VOCs has become a priority research direction of ecological issues. Among the many elimination methods, catalytic oxidation approaches are among the most effective and economical methods which can transform VOCs into CO2 and H2O. MnOx catalysts are among the most active catalysts, which can be further modified by different cations such as Cu2+, Co2+, Cr3+, Ni2+ and Ce4+ to form mixed oxides to improve the catalytic oxidation of VOCs activity. Moreover, MnOx can be loaded on the carrier, improving the redox and oxygen storage capacity and improving its stability and activity. This review explores the structure, preparation and oxidation state of Mn-based catalysts.


Corresponding author: Chao Sui, College of Chemistry and Chemical Engineering, Mudanjiang Normal University, Mudanjiang 157000, China, E-mail: ;

  1. Author contribution: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: Heilongjiang Province Education Department young creative talents training program (No. UNPYSCT-2020087); the Scientific Research Fund of Heilongjiang Education Department (No. 1451ZD002); Scientific Research Projects of Mudanjiang Normal University (No.GP2019002); Science and technology innovation project of Mudanjiang Normal University (kjcx2021-113mdjnu); Innovation and entrepreneurship training program for College Students (202110233009). Heilongjiang Laboratory of Photoelectric Functional Materials.

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

Atkinson, R. Atmospheric chemistry of VOCs and NOx. Atmos. Environ. 2000, 34, 2063–2101, https://doi.org/10.1016/s1352-2310(99)00460-4.Search in Google Scholar

Ao, C. H.; Lee, S. C.; Yu, J. Z.; Xu, J. H. Photodegradation of formaldehyde by photocatalyst TiO2: effects on the presences of NO, SO2 and VOCs. Appl. Catal. B Environ. 2004, 54, 41–50, https://doi.org/10.1016/j.apcatb.2004.06.004.Search in Google Scholar

Armor, J. N. Environmental catalysis. Appl. Catal. B Environ. 1992, 1, 221–256, https://doi.org/10.1016/0926-3373(92)80051-z.Search in Google Scholar

Ahn, C. W.; You, Y. W.; Heo, I.; Hong, J. S.; Jeon, J. K.; Ko, Y. D.; Kim, Y. H.; P, H.; Suh, J. K. Catalytic combustion of volatile organic compound over spherical-shaped copper-manganese oxide. J. Ind. Eng. Chem. 2017, 47, 439–445, https://doi.org/10.1016/j.jiec.2016.12.018.Search in Google Scholar

Aguilera, D. A.; Perez, A.; Molina, R.; Moreno, S. Cu–Mn and Co–Mn catalysts synthesized from hydrotalcites and their use in the oxidation of VOCs. Appl. Catal. B Environ. 2011, 104, 144–150, https://doi.org/10.1016/j.apcatb.2011.02.019.Search in Google Scholar

Aouadi, I.; Tatibouët, J. M.; Bergaoui, L. MnOx/TiO2 catalysts for VOCs abatement by coupling non-thermal plasma and photocatalysis. Plasma Chem. Plasma Process. 2016, 36, 1–15, https://doi.org/10.1007/s11090-016-9740-3.Search in Google Scholar

Bond, G. C.; Webb, G.; Spivey, J. J. Complete catalytic oxidation of volatile organics. Ind. Eng. Chem. Res. 1989, 26, 2165–2180.10.1039/9781847553201-00157Search in Google Scholar

Chen, H.; Tong, X.; Li, Y. Mesoporous Cu–Mn Hopcalite catalyst and its performance in low temperature ethylene combustion in a carbon dioxide stream. Appl. Catal. A-Gen. 2009, 370, 59–65, https://doi.org/10.1016/j.apcata.2009.09.017.Search in Google Scholar

Cen, W. L.; Liu, Y.; Wu, Z. B.; Wang, H. Q.; Weng, X. L. A theoretic insight into the catalytic activity promotion of CeO2 surfaces by Mn doping. Phys. Chem. Chem. Phys. 2012, 14, 5769–5777, https://doi.org/10.1039/c2cp00061j.Search in Google Scholar PubMed

Chen, J.; Chen, X.; Xu, W. J.; Xu, Z.; Jia, H. P.; Chen, J. Homogeneous introduction of CeOy into MnOx-based catalyst for oxidation of aromatic VOCs. Appl. Catal. B Environ. 2018, 224, 825–835, https://doi.org/10.1016/j.apcatb.2017.11.036.Search in Google Scholar

Castano, M. H.; Molina, R.; Moreno, S. Cooperative effect of the Co–Mn mixed oxides for the catalytic oxidation of VOCs: influence of the synthesis method. Appl. Catal. A-Gen. 2015, 492, 48–59, https://doi.org/10.1016/j.apcata.2014.12.009.Search in Google Scholar

Chen, H. H.; Zhang, H. P.; Yan, Y. Fabrication of porous copper/manganese binary oxides modified ZSM-5 membrane catalyst and potential application in the removal of VOCs. Chem. Eng. J. 2014, 254, 133–142, https://doi.org/10.1016/j.cej.2014.05.083.Search in Google Scholar

Duan, J. C.; Tan, J. H.; Liu, Y.; Shan, W. Concentration, sources and ozone formation potential of volatile organic compounds (VOCs) during ozone episode in Beijing. Atmos. Res. 2008, 88, 25–35, https://doi.org/10.1016/j.atmosres.2007.09.004.Search in Google Scholar

Destaillats, H.; Sleiman, M.; Sullivan, D. P.; Jacquiodc, C.; Sablayrollesd, J.; Molins, L. Key parameters influencing the performance of photocatalytic oxidation (PCO) air purification under realistic indoor conditions. Appl. Catal. B Environ. 2012, 128, 159–170, https://doi.org/10.1016/j.apcatb.2012.03.014.Search in Google Scholar

Debono, O.; Thevenet, F.; Gravejat, P.; Hequet, V.; Raillard, C.; Lecoq, L.; Locoge, N. Toluene photocatalytic oxidation at ppbv levels: kinetic investigation and carbon balance determination. Appl. Catal. B Environ. 2011, 106, 600–608, https://doi.org/10.1016/j.apcatb.2011.06.021.Search in Google Scholar

Deng, Q. F.; Ren, T. Z.; Yuan, Z. Y. Mesoporous manganese oxide nanoparticles for the catalytic total oxidation of toluene. React. Kinet. Mech. Catal. 2013, 108, 507–518, https://doi.org/10.1007/s11144-012-0528-z.Search in Google Scholar

Delimaris, D.; Ioannides, T. VOC oxidation over MnOx–CeO2 catalysts prepared by a combustion method. Appl. Catal. B Environ. 2008, 84, 303–312, https://doi.org/10.1016/j.apcatb.2008.04.006.Search in Google Scholar

Dimitrov, D. Y.; Kolentsova, E. N.; Ivanov, K. I. Influence of catalyst composition on co and vocs oxidation over Cu-Mn/γ-Al2O3. J. Int. Sci. Publ.: Ecol. Saf. 2014, 8, 504–510.Search in Google Scholar

Feng, Q. Y.; Liu, B. Y.; Ji, J.; Li, K.; Huang, H. B. Enhanced photo-degradation of gaseous toluene over MnOx/TiO2/activated carbon under a novel microwave discharge electrodeless lamps system. Appl. Surf. Sci. 2021, 547, 148955, https://doi.org/10.1016/j.apsusc.2021.148955.Search in Google Scholar

Genuino, H. C.; Dharmarathna, S.; Njagi, E. C.; Machej, T.; Gurgul, J.; Socha, R. P.; Podobinski, J.; Serwicka, E. M. Gas-phase total oxidation of benzene, toluene, ethylbenzene, and xylenes using shape-selective manganese oxide and copper manganese oxide catalysts. J. Phys. Chem. C 2012, 116, 969–976, https://doi.org/10.1021/jp301342f.Search in Google Scholar

Guo, M. N.; Fang, R. M.; Liu, X. W.; Yang, Z. Q. Experimental study of volatile organic compounds catalytic combustion on Cucmn catalysts with different carriers. Int. J. Energy Res. 2021, 45, 8749–8762, https://doi.org/10.1002/er.6411.Search in Google Scholar

He, C.; Li, J. J.; Chen, J.; Li, L. D.; Li, P.; Hao, Z. P.; Xu, Z. P. Comparative studies on porous material-supported Pd catalysts for catalytic oxidation of benzene, toluene, and ethyl acetate. Ind. Eng. Chem. Res. 2009, 48, 6930–6936, https://doi.org/10.1021/ie900412c.Search in Google Scholar

Hosseini, M.; Barakat, T.; Cousin, R.; AboukaiS, A.; Su, B. L.; Weireld, G. D.; Siffertet, S. Catalytic performance of core–shell and alloy Pd–Au nanoparticles for total oxidation of VOC: the effect of metal deposition. Appl. Catal. B Environ. 2012, 111–112, 218–224, https://doi.org/10.1016/j.apcatb.2011.10.002.Search in Google Scholar

Huang, H. B.; Huang, H.; Feng, Q. Y.; Liu, G. Y.; Zhan, Y. J.; Wu, M. Y.; Lu, H. X.; Shu, Y. J.; Leung, Y. C. Catalytic oxidation of benzene over Mn modified TiO2/ZSM-5 under vacuum UV irradiation. Appl. Catal. B Environ. 2017, 203, 870–878, https://doi.org/10.1016/j.apcatb.2016.10.083.Search in Google Scholar

Jia, C.; Batterman, S.; Godwin, C. VOCs in industrial, urban and suburban neighborhoods, Part 1: indoor and outdoor concentrations, variation, and risk drivers. Atmos. Environ. 2008, 42, 2083–2100, https://doi.org/10.1016/j.atmosenv.2007.11.055.Search in Google Scholar

Jiang, Z.; Jing, M.; Feng, X.; Xiong, J.; Qu, Z. Stabilizing platinum atoms on CeO2 oxygen vacancies by metal-support interaction induced interface distortion: mechanism and application. Appl. Catal. B Environ. 2020, 278, 119304, https://doi.org/10.1016/j.apcatb.2020.119304.Search in Google Scholar

Kim, Y. M.; Harrad, S.; Harrison, R. M. Concentrations and sources of VOCs in urban domestic and public microenvironments. Environ. Sci. Technol. 2016, 35, 997–1004, https://doi.org/10.1021/es000192y.Search in Google Scholar PubMed

Kansal, A. Sources and reactivity of NMHCs and VOCs in the atmosphere: a review. J. Hazard Mater. 2009, 166, 17–26, https://doi.org/10.1016/j.jhazmat.2008.11.048.Search in Google Scholar PubMed

Kim, S. C.; Shim, W. G. The role of lattice oxygen on the activity of manganese oxides towards the oxidation of volatile organic compounds. Appl. Catal. B Environ. 2010, 98, 180–185, https://doi.org/10.1016/j.apcatb.2010.05.027.Search in Google Scholar

Li, B. W.; Ho, S.; Li, X. H.; Guo, L. Y.; Ao, C.; Hu, L. T.; Yang, Y.; Di, Chen.; Lin, A. A.; Fang, X. K. A comprehensive review on anthropogenic volatile organic compounds (VOCs) emission estimates in China: comparison and outlook. Environ. Int. 2021, 156, 106710, https://doi.org/10.1016/j.envint.2021.106710.Search in Google Scholar PubMed

Liu, Y.; Shao, M.; Fu, L. L.; Lu, S. H. Source profiles of volatile organic compounds (VOCs) measured in China: Part I. Atmos. Environ. 2008, 42, 6247–6260, https://doi.org/10.1016/j.atmosenv.2008.01.070.Search in Google Scholar

Li, W. B.; Wang, J. X.; Gong, H. Catalytic combustion of VOCs on non-noble metal catalysts. Catal. Today 2009, 148, 81–87, https://doi.org/10.1016/j.cattod.2009.03.007.Search in Google Scholar

Lin, L.; Liu, S.; Liu, J. Surface modification of coconut shell based activated carbon for the improvement of hydrophobic VOC removal. J. Hazard Mater. 2011, 192, 683–690, https://doi.org/10.1016/j.jhazmat.2011.05.069.Search in Google Scholar PubMed

Liu, Y.; Deng, J.; Xie, S.; Wang, Z. W.; Dai, H. X. Catalytic removal of volatile organic compounds using ordered porous transition metal oxide and supported noble metal catalysts. Chin. J. Catal. 2016, 37, 1193–1205, https://doi.org/10.1016/s1872-2067(16)62457-9.Search in Google Scholar

Li, W.; Ye, H.; Liu, G.; Ji, H.; Zhou, Y.; Han, K. The role of graphene coating on cordierite-supported Pd monolithic catalysts for low-temperature combustion of toluene. Chin. J. Catal. 2018, 39, 946–954, https://doi.org/10.1016/s1872-2067(18)63015-3.Search in Google Scholar

Lahousse, C.; Bernier, A.; Grange, P.; Delmon, B.; Papaefthimiou, P.; Ioannides, T.; Verykios, X. Evaluation of γ-MnO2 as a VOC removal catalyst: comparison with a noble metal catalyst. J. Catal. 1998, 178, 214–225, https://doi.org/10.1006/jcat.1998.2148.Search in Google Scholar

Liang, S.; Fei, T.; Bulgan, G.; Zong, R. L.; Zhu, Y. F. Effect of phase structure of MnO2 nanorod catalyst on the activity for CO oxidation. J. Phys. Chem. C 2010, 112, 5307–5315.10.1021/jp0774995Search in Google Scholar

Li, W.; Yang, S.; Wang, K.; Tu, S. H.; Lu, M. J.; Wu, P. X. Evaluation of the physiochemical properties and catalytic performance of CuCoMnAl mixed oxides derived from layered double hydroxides precursors with different mole ratios of Cu/Co on the oxidation of toluene. React. Kinet. Mech. Catal. 2019, 128, 965–977, https://doi.org/10.1007/s11144-019-01676-9.Search in Google Scholar

Li, J. R.; Zhang, W. P.; Li, C.; Chi, H. Efficient catalytic degradation of toluene at a readily prepared Mn-Cu catalyst: catalytic performance and reaction pathway. J. Colloid Interface Sci. 2021, 591, 396–408, https://doi.org/10.1016/j.jcis.2021.01.096.Search in Google Scholar PubMed

Luo, M.; Cheng, Y.; Peng, X.; Pan, W. Copper modified manganese oxide with tunnel structure as efficient catalyst for low-temperature catalytic combustion of toluene. Chem. Eng. J. 2019, 369, 758–765, https://doi.org/10.1016/j.cej.2019.03.056.Search in Google Scholar

Li, J. R.; Zhang, W. P.; Li, C.; Xiao, H.; He, C. Insight into the catalytic performance and reaction routes for toluene total oxidation over facilely prepared Mn-Cu bimetallic oxide catalysts. Appl. Surf. Sci. 2021, 550, 149179, https://doi.org/10.1016/j.apsusc.2021.149179.Search in Google Scholar

Leng, X. S.; Zhang, Z. P.; Li, Y. S.; Zhang, T. R.; Ma, S. B.; Yuan, F. L.; Niu, X. Y.; Zhu, Y. J. Excellent low temperature NH3-SCR activity over MnaCe0.3TiOx (a =0.1 –0.3 ) oxides: influence of Mn addition. Fuel Process. Technol. 2018, 181, 33–43, https://doi.org/10.1016/j.fuproc.2018.09.012.Search in Google Scholar

Li, G. G.; Li, N.; Sun, Y. J.; Qu, Y. M. Efficient defect engineering in Co-Mn binary oxides for low-temperature propane oxidation. Appl. Catal. B Environ. 2020, 282, 119512.10.1016/j.apcatb.2020.119512Search in Google Scholar

Li, B.; Yang, B.; Peng, Y.; Chen, J.; Deng, L.; Wang, D.; Hong, X.; Li, J. Enhanced low-temperature activity of LaMnO3 for toluene oxidation: the effect of treatment with an acidic KMnO4. Chem. Eng. J. 2019, 366, 92–99, https://doi.org/10.1016/j.cej.2019.01.139.Search in Google Scholar

Li, L.; Shi, J. W.; Tian, M. J.; Chen, C. W.; Wang, B. R.; Ma, M. D.; He, C. In situ fabrication of robust three dimensional ordered macroporous γ-MnO2/LaMnO3.15 catalyst for chlorobenzene efficient destruction. Appl. Catal. B Environ. 2020, 282, 119565.10.1016/j.apcatb.2020.119565Search in Google Scholar

Larsson, P. O.; Berggren, H.; Andersson, A.; Augustsson, O. Supported metal oxides for catalytic combustion of CO and VOCs emissions: preparation of titania overlayers on a macroporous support. Catal. Today 1997, 35, 137–144, https://doi.org/10.1016/s0920-5861(96)00140-x.Search in Google Scholar

Malhautier, L.; Quijano, G.; Avezac, M.; Rocher, J. Kinetic characterization of toluene biodegradation by Rhodococcus erythropolis: towards a rationale for microflora enhancement in bioreactors devoted to air treatment. Chem. Eng. J. 2014, 247, 199–204, https://doi.org/10.1016/j.cej.2014.02.099.Search in Google Scholar

Ma, M.; Yang, R.; He, C.; Jiang, Z.; Liu, B. Pd-based catalysts promoted by hierarchical porous Al2O3 and ZnO microsphere supports/coatings for ethyl acetate highly active and stable destruction. J. Hazard Mater. 2020, 401, 123281, https://doi.org/10.1016/j.jhazmat.2020.123281.Search in Google Scholar PubMed

Min, X.; Guo, M.; Liu, L.; Li, L.; Gu, J. N.; Liang, J. X.; Chen, C.; Li, K.; Jia, J. P.; Sun, T. H. Synthesis of MnO2 derived from spent lithium-ion batteries via advanced oxidation and its application in VOCs oxidation. J. Hazard Mater. 2021, 406, 124743, https://doi.org/10.1016/j.jhazmat.2020.124743.Search in Google Scholar PubMed

Ma, M. D.; Zhu, Q.; Jiang, Z. Y.; Jian, Y. F.; Chen, C. W.; Liu, Q. Y.; He, C. Achieving toluene efficient mineralization over K/ɑ-MnO2 via oxygen vacancy modulation. J. Colloid Interface Sci. 2021, 598, 238–249, https://doi.org/10.1016/j.jcis.2021.04.043.Search in Google Scholar PubMed

Mo, S. P.; Zhang, Qi.; Li, J. Q.; Sun, Y. H.; Ren, Q. M.; Zou, S. B.; Zhang, Q.; Lu, J. H.; Fu, M. L.; Mo, D. Q.; Wu, J. L.; Huang, H. M.; Ye, D. Q. Highly efficient mesoporous MnO2 catalysts for the total toluene oxidation: oxygen-Vacancy defect engineering and involved intermediates using in situ DRIFTS. Appl. Catal. B Environ. 2020, 264, 118464, https://doi.org/10.1016/j.apcatb.2019.118464.Search in Google Scholar

Montini, T.; Melchionna, M.; Monai, M.; Fornasiero, P. Fundamentals and catalytic applications of CeO2-based materials. Chem. Rev. 2016, 116, 5987, https://doi.org/10.1021/acs.chemrev.5b00603.Search in Google Scholar PubMed

More, R. K.; Lavande, N. R.; More, P. M. Mn supported on Ce substituted hydroxyapatite for VOC oxidation: catalytic activity and calcination effect. Catal. Lett. 2020, 150, 419–428, https://doi.org/10.1007/s10562-019-03091-0.Search in Google Scholar

Miniajluk, N.; Trawczyński, J.; Zawadzki, M. Properties and catalytic performance for propane combustion of LaMnO3 prepared under microwave-assisted glycothermal conditions: effect of solvent diols. Appl. Catal. A-Gen. 2017, 531, 119–128, https://doi.org/10.1016/j.apcata.2016.10.026.Search in Google Scholar

Piumetti, M.; Fino, D.; Russo, N. Mesoporous manganese oxides prepared by solution combustion synthesis as catalysts for the total oxidation of VOCs. Appl. Catal. B Environ. 2015, 163, 277–287, https://doi.org/10.1016/j.apcatb.2014.08.012.Search in Google Scholar

Pena, M. A.; Fierro, J. L. G. Chemical structures and performance of perovskite oxides. Chem. Rev. 2001, 101, 1981–2017, https://doi.org/10.1021/cr980129f.Search in Google Scholar PubMed

Pan, K. L.; Pan, G. T.; Chong, S. W.; Chang, M. B. Removal of VOCs from gas streams with double perovskite-type catalysts. J. Environ. Sci. 2018, 69, 205–216, https://doi.org/10.1016/j.jes.2017.10.012.Search in Google Scholar PubMed

Pérez, H.; Navarro, P.; Delgado, J. J.; Montes, M. Mn-SBA15 catalysts prepared by impregnation: influence of the manganese precursor. Appl. Catal. A-Gen. 2011, 400, 238–248.10.1016/j.apcata.2011.05.002Search in Google Scholar

Royer, S.; Duprez, D.; Can, F.; Courtois, X.; Dupeyrat, C. B.; Laassiri, S.; Alamdari, H. Perovskites as substitutes of noble metals for heterogeneous catalysis: dream or reality. Chem. Rev. 2015, 45, 10292–10368, https://doi.org/10.1021/cr500032a.Search in Google Scholar PubMed

Shi, Y.; Li, Z.; Wang, J.; Zhou, R. X. Synergistic effect of Pt/Ce and USY zeolite in Pt-based catalysts with high activity for VOCs degradation - ScienceDirect. Appl. Catal. B Environ. 2021, 286, 119936, https://doi.org/10.1016/j.apcatb.2021.119936.Search in Google Scholar

Santos, V. P.; Pereira, M.; Órfão, J. J. M.; Figueiredo, J. L. The role of lattice oxygen on the activity of manganese oxides towards the oxidation of volatile organic compounds. Appl. Catal. B Environ. 2010, 99, 353–363, https://doi.org/10.1016/j.apcatb.2010.07.007.Search in Google Scholar

Shi, F.; Fang, W.; Dai, H.; Dai, J. X.; Deng, J. G.; Liu, Y. X.; Bai, G. M.; Ji, K. M.; Au, C. T. Rod-, flower-, and dumbbell-like MnO2: highly active catalysts for the combustion of toluene. Appl. Catal. A-Gen. 2012, 433–434, 206–213, https://doi.org/10.1016/j.apcata.2012.05.016.Search in Google Scholar

Sun, M.; Yu, L.; Ye, F.; Diao, G. Q.; Yu, Q.; Hao, Z. F.; Zheng, Y. Y.; Yuan, L. X. Transition metal doped cryptomelane-type manganese oxide for low-temperature catalytic combustion of dimethyl ether. Chem. Eng. J. 2013, 220, 320–327, https://doi.org/10.1016/j.cej.2013.01.061.Search in Google Scholar

Sun, C. W.; Li, H.; Chen, L. Q. Nanostructured ceria-based materials: synthesis, properties, and applications. J. Cheminf. 2012, 5, 8475–8505, https://doi.org/10.1039/c2ee22310d.Search in Google Scholar

Sayle, T.; Parker, S. C.; Sayle, D. C. Oxidising CO to CO2 using ceria nanoparticles. Phys. Chem. Chem. Phys. 2005, 7, 2936–2941, https://doi.org/10.1039/b506359k.Search in Google Scholar PubMed

Spinicci, R.; Faticanti, M.; Marini, P.; Rossi, S. D. Catalytic activity of LaMnO3 and LaCoO3 perovskites towards VOCs combustion. J. Mol. Catal. Chem. 2003, 197, 147–155, https://doi.org/10.1016/s1381-1169(02)00621-0.Search in Google Scholar

Sihaib, Z.; Puleo, F.; Pantaleo, G.; Parola, V. L. The effect of citric acid concentration on the properties of LaMnO3 as a catalyst for hydrocarbon oxidation. Catalysts 2019, 9, 226, https://doi.org/10.3390/catal9030226.Search in Google Scholar

Sinquin, G.; Petit, C.; Libs, S.; Hindermann, J. P.; Kiennemann, A. Catalytic destruction of chlorinated C1 volatile organic compounds (CVOCs) reactivity, oxidation and hydrolysis mechanisms. Appl. Catal. B Environ. 2000, 27, 105–115, https://doi.org/10.1016/s0926-3373(00)00143-0.Search in Google Scholar

Thevenet, F.; Sivachandiran, L.; Guaitella, O.; Barakatet, C. Plasmacatalyst coupling for volatile organic compound removal and indoor air treatment: a review. J. Phys. D Appl. Phys. 2014, 47, 224011, https://doi.org/10.1088/0022-3727/47/22/224011.Search in Google Scholar

Tang, X.; Li, J.; Hao, J. Significant enhancement of catalytic activities of manganese oxide octahedral molecular sieve by marginal amount of doping vanadium. Catal. Commun. 2010, 11, 871–875, https://doi.org/10.1016/j.catcom.2010.03.011.Search in Google Scholar

Tang, W. X.; Wu, X. F.; Liu, G.; Li, S. D.; Li, D. Y.; Li, W. H.; Chen, Y. F. Preparation of hierarchical layer-stacking Mn-Ce composite oxide for catalytic total oxidation of VOCs. J. Rare Earths 2015, 33, 62–69, https://doi.org/10.1016/s1002-0721(14)60384-7.Search in Google Scholar

Todorova, S.; Kolev, H.; Holgado, J. P.; Kadinov, G.; Bonev, C.; Pereñíguez, R.; Caballero, A. Complete n-hexane oxidation over supported Mn-Co catalysts. Appl. Catal. B Environ. 2010, 94, 46–54, https://doi.org/10.1016/j.apcatb.2009.10.019.Search in Google Scholar

Tian, Z. Y.; Ngamou, P. T.; Vannier, V.; HöInghaus, K. K. Catalytic oxidation of VOCs over mixed Co–Mn oxides. Appl. Catal. B Environ. 2012, 117–118, 125–134, https://doi.org/10.1016/j.apcatb.2012.01.013.Search in Google Scholar

Tian, Z. Y.; Bahlawane, N.; Vannier, V.; Hoinghaus, K. K. Structure sensitivity of propene oxidation over Co-Mn spinels. Proc. Combust. Inst. 2013, 34, 2261–2268, https://doi.org/10.1016/j.proci.2012.06.182.Search in Google Scholar

Tang, W. X.; Wu, X. F.; Li, S. D.; Li, W. H.; Chen, Y. F. Porous Mn–Co mixed oxide nanorod as a novel catalyst with enhanced catalytic activity for removal of VOCs. Catal. Commun. 2014, 56, 134–138, https://doi.org/10.1016/j.catcom.2014.07.023.Search in Google Scholar

Uematsu, T.; Miyamoto, Y.; Ogasawara, Y.; Suzuki, K.; Yamaguchia, K.; Mizuno, N. Molybdenum-doped alpha-MnO2 as an efficient reusable heterogeneous catalyst for aerobic sulfide oxygenation. Catal. Sci. Technol. 2016, 6, 222–233, https://doi.org/10.1039/c5cy01552a.Search in Google Scholar

Wu, W. L.; Xue, W. B.; Zheng, Y. X.; Wang, Y. L.; Lei, Y.; Wang, J. N. Diurnal regulation of VOCs may not be effective in controlling ozone pollution in China. Atmos. Environ. 2021, 256, 118442, https://doi.org/10.1016/j.atmosenv.2021.118442.Search in Google Scholar

Wang, F.; Dai, H.; Deng, J.; Bai, G. M.; Ji, K. M.; Liu, Y. X. Manganese oxides with rod-, wire-, tube-, and flower-like morphologies: highly effective catalysts for the removal of toluene. Environ. Sci. Technol. 2012, 46, 4034–4041, https://doi.org/10.1021/es204038j.Search in Google Scholar PubMed

Wang, L.; Zhang, C.; Huang, H.; Li, X. B.; Zhang, W.; Lu, M. H.; Li, M. S. Catalytic oxidation of toluene over active MnO(x) catalyst prepared via an alkali-promoted redox precipitation method. React. Kinet. Mech. Catal. 2016, 118, 605–619, https://doi.org/10.1007/s11144-016-1011-z.Search in Google Scholar

Wu, K.; Sun, L. D.; Yan, C. H. Recent progress in well‐controlled synthesis of ceria‐based nanocatalysts towards enhanced catalytic performance. Adv. Energy Mater. 2016, 6, 1600501, https://doi.org/10.1002/aenm.201600501.Search in Google Scholar

Wang, Z.; Shen, G. L.; Li, J. Q.; Liu, H. D.; Wang, Q.; Chen, Y. F. Catalytic removal of benzene over CeO2–MnOx composite oxides prepared by hydrothermal method. Appl. Catal. B Environ. 2013, 138–139, 253–259, https://doi.org/10.1016/j.apcatb.2013.02.030.Search in Google Scholar

Wang, Y.; Deng, W.; Wang, Y. F.; Guo, L. M.; Tatsumi, I. A comparative study of the catalytic oxidation of chlorobenzene and toluene over Ce–Mn oxides. Mol. Catal. 2018, 459, 61–70, https://doi.org/10.1016/j.mcat.2018.08.022.Search in Google Scholar

Wu, E. H.; Feng, X. S.; Zheng, Y. B.; Lin, D. F. Inverse coprecipitation directed porous core–shell Mn–Co–O catalyst for efficient low temperature propane oxidation. ACS Sustain. Chem. Eng. 2020, 8, 5787–5798, https://doi.org/10.1021/acssuschemeng.0c01497.Search in Google Scholar

Wang, Y. Z.; Xie, S. H.; Deng, J. G.; Deng, S. X. Morphologically controlled synthesis of porous spherical and cubic LaMnO3 with high activity for the catalytic removal of toluene. ACS Appl. Mater. Interfaces 2014, 6, 17394–17401, https://doi.org/10.1021/am500489x.Search in Google Scholar PubMed

Wang, X.; Ran, L.; Dai, Y.; Lu, Y.; Dai, Q. Removal of Cl adsorbed on Mn–Ce–La solid solution catalysts during CVOCs combustion. J. Colloid Interface Sci. 2014, 426, 324–332, https://doi.org/10.1016/j.jcis.2013.10.007.Search in Google Scholar PubMed

Weng, X.; Meng, Q.; Liu, J.; Jiang, W.; Pattisson, S.; Wu, Z. Catalytic oxidation of chlorinated organics over lanthanide perovskites: effects of phosphoric acid etching and water vapor on chlorine desorption behavior. Environ. Sci. Technol. 2019, 53, 884–893, https://doi.org/10.1021/acs.est.8b04582.Search in Google Scholar PubMed

Wang, P.; He, Y.; Yang, Z. Q.; Liu, X. W.; Ran, J. G.; Guo, M. N. Experimental study of benzene catalytic combustion over Cu–Mn–Ce/Al2O3 particles. ChemistrySelect 2020, 5, 1122–1129, https://doi.org/10.1002/slct.201902976.Search in Google Scholar

Wu, M.; Wang, X. Y.; Dai, Q. G.; Gu, Y. X.; Li, D. Low temperature catalytic combustion of chlorobenzene over Mn–Ce–O/γ-Al2O3 mixed oxides catalyst. Catal. Today 2010, 158, 336–342, https://doi.org/10.1016/j.cattod.2010.04.006.Search in Google Scholar

Yuan, M. H.; Chang, C. Y.; Shie, J. L.; Chang, C. C.; Chen, J. H.; Tsai, W. T. Destruction of naphthalene via ozone-catalytic oxidation process over Pt/Al2O3 catalyst. J. Hazard Mater. 2010, 175, 809–815, https://doi.org/10.1016/j.jhazmat.2009.10.081.Search in Google Scholar PubMed

Yuan, Y.; Nie, A.; Odegard, R, G. M.; Xu, D.; Zhou, H.; Santhanagopalan, S.; He, K.; Ardakani, H. A.; Meng, D. D.; Klie, R. F.; Johnson, C.; Lu, J.; Yassar, R. S. Asynchronous crystal cell expansion during lithiation of K+-Stabilized α-MnO2. Nano Lett. 2015, 15, 2998–3007, https://doi.org/10.1021/nl5048913.Search in Google Scholar PubMed

Yang, W.; Su, Z.; Xu, Z.; Yang, W.; Li, J. Comparative study of α-, β-, γ- and δ-MnO2 on toluene oxidation: oxygen vacancies and reaction intermediates. Appl. Catal. B Environ. 2019, 260, 118150.10.1016/j.apcatb.2019.118150Search in Google Scholar

Ye, Z.; Giraudon, J. M.; Nuns, N.; Simon, P.; Geyter, N. De.; Morent, R.; Lamonier, J. F. Influence of the preparation method on the activity of copper- manganese oxides for toluene total oxidation. Appl. Catal. B Environ. 2018, 223, 154–166, https://doi.org/10.1016/j.apcatb.2017.06.072.Search in Google Scholar

Yang, Q. L.; Liu, G. L.; Liu, Y. Perovskite-type oxides as the catalyst precursors for preparing supported metallic nanocatalysts: a review. Ind. Eng. Chem. Res. 2017, 57, 1–17, https://doi.org/10.1021/acs.iecr.7b03251.Search in Google Scholar

Zhang, Z. P.; Li, R. M.; Wang, M. J.; Li, Y. S.; Tong, Y. M.; Yang, P. P.; Zhu, Y. J. Two steps synthesis of CeTiOx oxides nanotube catalyst: enhanced activity, resistance of SO2 and H2O for low temperature NH3-SCR of NOx. Appl. Catal. B Environ. 2021, 282, 119542, https://doi.org/10.1016/j.apcatb.2020.119542.Search in Google Scholar

Zhang, T. R.; Ma, S. B.; Chen, L. Q.; Li, R.; Leng, X. S.; Li, Y. S.; Yuan, F. L.; Niu, X. Y.; Zhu, Y. J. Effect of Cu doping on the SCR activity over the CumCe0.1−mTiOx (m = 0.01, 0.02 and 0.03) catalysts. Appl. Catal. A-Gen. 2018, 570, 251–261.10.1016/j.apcata.2018.11.025Search in Google Scholar

Zhou, G.; Hai, L.; Hui, W.; Xie, H. M.; Zhang, G. Z.; Zheng, X. X. Catalytic combustion of PVOCs on MnOx catalysts. Mol. Catal. 2014, 393, 279–288, https://doi.org/10.1016/j.molcata.2014.06.028.Search in Google Scholar

Zimowska, M.; Michalik-Zym, A.; Janik, R.; Machej, T.; Gurgul, J.; Socha, R. P.; Podobinski, J.; Serwicka, E. M. Catalytic combustion of volatile organic compound over spherical-shaped copper- manganese oxide. Catal. Today 2007, 119, 321–326, https://doi.org/10.1016/j.cattod.2006.08.022.Search in Google Scholar

Zeng, X. L.; Li, B.; Liu, R. Q.; Li, X.; Zhu, T. l. Investigation of promotion effect of Cu doped MnO2 catalysts on ketone-type VOCs degradation in a one-stage plasma-catalysis system. Chem. Eng. J. 2020, 384, 123362, https://doi.org/10.1016/j.cej.2019.123362.Search in Google Scholar

Zhao, L. L.; Zhang, Z. P.; Li, Y. S.; Leng, X. S.; Zhang, T. R.; Yuan, F. L.; Niu, X. Y.; Zhu, Y. J. Synthesis of CeaMnOx hollow microsphere with hierarchical structure and its excellent catalytic performance for toluene combustion. Appl. Catal. B Environ. 2019, 245, 502–512, https://doi.org/10.1016/j.apcatb.2019.01.005.Search in Google Scholar

Zhou, G. L.; He, X. L.; Liu, S.; Xie, H. M.; Fu, M. Phenyl VOCs catalytic combustion on supported CoMn/AC oxide catalyst. J. Ind. Eng. Chem. 2015, 21, 932–941, https://doi.org/10.1016/j.jiec.2014.04.035.Search in Google Scholar

Zhao, H.; Wang, H.; Qu, Z. Synergistic effects in Mn–Co mixed oxide supported on cordierite honeycomb for catalytic deep oxidation of VOCs. J. Environ. Sci. 2022, 112, 231–243, https://doi.org/10.1016/j.jes.2021.05.003.Search in Google Scholar PubMed

Zhang, X. L.; Ye, J. H.; Jing, Y.; Cai, T. T. Excellent low-temperature catalytic performance of nanosheet Co–Mn oxides for total benzene oxidation. Appl. Catal. A-Gen. 2018, 566, 104–112, https://doi.org/10.1016/j.apcata.2018.05.039.Search in Google Scholar

Zhu, J. J.; Li, H. L.; Zhong, L. Y.; Xiao, P.; Xu, X. L.; Yang, X. G.; Zhao, Z.; Li, J. L. Perovskite oxides: preparation, characterizations, and applications in heterogeneous catalysis. ACS Catal. 2014, 4, 2917–2940, https://doi.org/10.1021/cs500606g.Search in Google Scholar

Zhang, C.; Guo, Y.; Guo, Y.; Lu, G.; Boreave, A.; Retailleau, L.; Baylet, A.; Giroir-Fendler, A. LaMnO3 perovskite oxides prepared by different methods for catalytic oxidation of toluene. Appl. Catal. B Environ. 2014, 148–149, 490–498, https://doi.org/10.1016/j.apcatb.2013.11.030.Search in Google Scholar

Received: 2021-12-12
Revised: 2022-01-15
Accepted: 2022-01-31
Published Online: 2022-02-10
Published in Print: 2023-03-28

© 2022 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 10.12.2025 from https://www.degruyterbrill.com/document/doi/10.1515/revic-2021-0042/pdf
Scroll to top button