Home Physical Sciences Recent progress on fabrication methods of graphene-based membranes for water purification, gas separation, and energy sustainability
Article
Licensed
Unlicensed Requires Authentication

Recent progress on fabrication methods of graphene-based membranes for water purification, gas separation, and energy sustainability

  • Faisal Rehman

    Faisal Rehman is working at College of EME, National University of Science and Technology (NUST), Islamabad Pakistan. He has completed BE and ME (Electronics System Design) with specialization in Micro Electronics system design from Sukkur IBA University, Pakistan, and Master of Science (MS) degree in Digital Fabrication Design from Massachusetts Institute of Technology (MIT), USA. His research interests are Bio Chip, Material Engineering, 2D Materials such as Graphene, MXene, TMDCs for membrane technology, Bio Electronics, Nano Electronics, Micro Electronics, Embedded Electronics, etc.

    ORCID logo
    , Fida Hussain Memon

    Fida Hussain Memon is currently working as a faculty member at Sukkur IBA University, Sindh, Pakistan. He obtained his Bachelor and Master degree in Electrical Engineering from Sukkur IBA University, Sindh, Pakistan. His current research focus on nanomaterials, nanotechnology, and renewable energy includes applications of graphene-based energy storage devices.

    , Akbar Ali

    Akbar Ali is a PhD scholar at Lodz University of Technology, Lodz Poland. He has completed his Master of Science (MS) degree in Nano-chemistry from National Center for Nanoscience and Technology, CAS, China (2018). He has published ∼50 research papers in world’s highly reputed journals. His current research interests are “synthesis of two-dimensional materials such as graphene, graphene oxide, MXene, TMDCs etc for energy and environmental applications”.

    , Shah Masaud Khan

    Shah Masaud Khan working as an Associate professor and chairman department of horticulture at the university of Haripur. He has served ∼22 years at different organizations. He has published more than 100 research papers in highly reputed journals and supervised more than 30 MS and PhD scholars. He has worked on 5 x research projects as PI and Co-PI. In addition, he also served as Director advance studies and Registrar of the university of Haripur.

    , Faheeda Soomro

    Faheeda Soomro is working as faculty member at Begum Nusrat Bhutto Women University (BNBU), Sukkur Pakistan. She has completed her PhD in Biochemistry and Molecular biology from Chinese Academy of Agricultural Sciences (CAAS) Beijing, China. Her research work is focused on the applications of nanomaterials in bio-medical, water purification, photocatalysis etc.

    , Muzaffar Iqbal

    Dr. Muzaffar Iqbal is working as faculty member at Department of Chemistry, The University of Haripur KPK, Pakistan. He completed his PhD in Chemistry from National Center of Nanoscience and Technology, Chinese Academy of Science Beijing, China and Postdoc from Beijing University of Science & Technology, China. His research work is mainly focused in the synthesis of nanomaterials and their applications in photocatalysis, water splitting and membrane technology.

    EMAIL logo
    and Khalid Hussain Thebo

    Dr. Khalid Hussain Thebo did PhD in Material Science from Institute of Metal Research, Chinese Academy of Science (CAS), China under supervision of Prof. Wencai Ren & Prof. Hui-Ming Cheng on “graphene-based membrane for water purification and desalination applications”. His research interest includes: synthesis of 2D Materials (Graphene, MXene & Metal Chalcogenides); membrane science/ technology for drinking water purification and wastewater reuse, gas membranes; proton exchange membranes and photocatalysis.

    EMAIL logo
Published/Copyright: March 30, 2022

Abstract

Graphene-based layered materials have got significant interest in membrane technology for water desalination, gas separation, organic nanofiltration, pervaporation, proton exchange applications, etc. and show remarkable results. Up to date, various methods have been developed for fabrication of high performance membrane. Most of them are only suitable for research purposes, but not appropriate for mass transport barrier and membrane applications that require large-area synthesis. In this comprehensive review, we summarized the current synthesis and fabrication methods of graphene-based membranes. Emphasis will be given on fabrication of both graphene-based nanoporous and lamellar membranes. Finally, we discuss the current engineering hurdles and future research directions yet to be explored for fabrication of such membranes.


Corresponding authors: Muzaffar Iqbal, Department of Chemistry, The University of Haripur KPK, Haripur, Pakistan, E-mail: ; and Khalid Hussain Thebo, Institute of Metal Research, Chinese Academy of Sciences (CAS), Shenyang, China,

Funding source: Higher Education Commision, Pakistan

Award Identifier / Grant number: 399/IPFP-II(Batch-1)/SRGP/NAHE/HEC/2020/23)

Funding source: The University of Haripur, KPK, Pakistan

Funding source: Chinese Academy of Sciences (CAS), China

About the authors

Faisal Rehman

Faisal Rehman is working at College of EME, National University of Science and Technology (NUST), Islamabad Pakistan. He has completed BE and ME (Electronics System Design) with specialization in Micro Electronics system design from Sukkur IBA University, Pakistan, and Master of Science (MS) degree in Digital Fabrication Design from Massachusetts Institute of Technology (MIT), USA. His research interests are Bio Chip, Material Engineering, 2D Materials such as Graphene, MXene, TMDCs for membrane technology, Bio Electronics, Nano Electronics, Micro Electronics, Embedded Electronics, etc.

Fida Hussain Memon

Fida Hussain Memon is currently working as a faculty member at Sukkur IBA University, Sindh, Pakistan. He obtained his Bachelor and Master degree in Electrical Engineering from Sukkur IBA University, Sindh, Pakistan. His current research focus on nanomaterials, nanotechnology, and renewable energy includes applications of graphene-based energy storage devices.

Akbar Ali

Akbar Ali is a PhD scholar at Lodz University of Technology, Lodz Poland. He has completed his Master of Science (MS) degree in Nano-chemistry from National Center for Nanoscience and Technology, CAS, China (2018). He has published ∼50 research papers in world’s highly reputed journals. His current research interests are “synthesis of two-dimensional materials such as graphene, graphene oxide, MXene, TMDCs etc for energy and environmental applications”.

Shah Masaud Khan

Shah Masaud Khan working as an Associate professor and chairman department of horticulture at the university of Haripur. He has served ∼22 years at different organizations. He has published more than 100 research papers in highly reputed journals and supervised more than 30 MS and PhD scholars. He has worked on 5 x research projects as PI and Co-PI. In addition, he also served as Director advance studies and Registrar of the university of Haripur.

Faheeda Soomro

Faheeda Soomro is working as faculty member at Begum Nusrat Bhutto Women University (BNBU), Sukkur Pakistan. She has completed her PhD in Biochemistry and Molecular biology from Chinese Academy of Agricultural Sciences (CAAS) Beijing, China. Her research work is focused on the applications of nanomaterials in bio-medical, water purification, photocatalysis etc.

Muzaffar Iqbal

Dr. Muzaffar Iqbal is working as faculty member at Department of Chemistry, The University of Haripur KPK, Pakistan. He completed his PhD in Chemistry from National Center of Nanoscience and Technology, Chinese Academy of Science Beijing, China and Postdoc from Beijing University of Science & Technology, China. His research work is mainly focused in the synthesis of nanomaterials and their applications in photocatalysis, water splitting and membrane technology.

Khalid Hussain Thebo

Dr. Khalid Hussain Thebo did PhD in Material Science from Institute of Metal Research, Chinese Academy of Science (CAS), China under supervision of Prof. Wencai Ren & Prof. Hui-Ming Cheng on “graphene-based membrane for water purification and desalination applications”. His research interest includes: synthesis of 2D Materials (Graphene, MXene & Metal Chalcogenides); membrane science/ technology for drinking water purification and wastewater reuse, gas membranes; proton exchange membranes and photocatalysis.

  1. Author contributions: All the authors have accepted responsibility for the future entire content of this submitted manuscript and approved submission.

  2. Research funding: This research is financially supported by the Higher Education Commission (HEC), Pakistan for Project No. 399/IPFP-II(Batch-1)/SRGP/NAHE/HEC/2020/23). Authors are also thankful for research support from The University of Haripur, KPK, Pakistan, and Chinese Academy of Sciences (CAS), China.

  3. Conflict of interest statement: The Authors whose names include in this manuscript have no conflict of interest to declare.

References

Ahmed Janjhi, F.; Chandio, I.; Ali Memon, A.; Ahmed, Z.; Hussain Thebo, K.; Pirzado, A. A. A.; Hakro, A. A.; Iqbal, M. Functionalized graphene oxide based membranes for ultrafast molecular separation. Separ. Purif. Technol. 2021, 117969.10.1016/j.seppur.2020.117969Search in Google Scholar

Ahmed, Z.; Rehman, F.; Ali, U.; Ali, A.; Iqbal, M.; Thebo, K. H. Recent advances in MXene-based separation membranes. ChemBioEng Rev. 2021, 8(2), 110–120; https://doi.org/10.1002/cben.202000026.Search in Google Scholar

Akbari, A.; Sheath, P.; Martin, S. T.; Shinde, D. B.; Shaibani, M.; Banerjee, P. C.; Tkacz, R.; Bhattacharyya, D.; Majumder, M. Large-area graphene-based nanofiltration membranes by shear alignment of discotic nematic liquid crystals of graphene oxide. Nat. Commun. 2016, 7, 10891; https://doi.org/10.1038/ncomms10891.Search in Google Scholar PubMed PubMed Central

Ali, A.; Aamir, M.; Thebo, K. H.; Akhtar, J. Laminar graphene oxide membranes towards selective ionic and molecular separations: challenges and progress. Chem. Rec. 2020a, 20(4), 344–354; https://doi.org/10.1002/tcr.201900024.Search in Google Scholar PubMed

Ali, A.; Pothu, R.; Siyal, S. H.; Phulpoto, S.; Sajjad, M.; Thebo, K. H. Graphene-based membranes for CO2 separation. Mater. Sci. Energy Technol. 2019a, 2(1), 83–88; https://doi.org/10.1016/j.mset.2018.11.002.Search in Google Scholar

Ali, Z.; Mehmood, M.; Ahmed, J.; Majeed, A.; Thebo, K. H. MWCNTs and carbon onions grown by CVD method on nickel-cobalt alloy nanocomposites prepared via novel alcogel electrolysis technique and its oxygen evolution reaction application. Mater. Res. Express 2019b, 6(10), 105627; https://doi.org/10.1088/2053-1591/ab41d4.Search in Google Scholar

Ali, Z.; Mehmood, M.; Ahmed, J.; Majeed, A.; Thebo, K. H. CVD grown defect rich-MWCNTs with anchored CoFe alloy nanoparticles for OER activity. Mater. Lett. 2020b, 259, 126831; https://doi.org/10.1016/j.matlet.2019.126831.Search in Google Scholar

Aliprandi, A.; Pakulski, D.; Ciesielski, A.; Samorì, P. Punctured two-dimensional sheets for harvesting blue energy. ACS Nano 2017, 11(11), 10654–10658; https://doi.org/10.1021/acsnano.7b06657.Search in Google Scholar PubMed

An, Q.; Huang, T.; Shi, F. Covalent layer-by-layer films: chemistry, design, and multidisciplinary applications. Chem. Soc. Rev. 2018, 47(13), 5061–5098; https://doi.org/10.1039/c7cs00406k.Search in Google Scholar PubMed

Azamat, J. Functionalized Graphene nanosheet as a membrane for water desalination using applied electric fields: insights from molecular dynamics simulations. J. Phys. Chem. C 2016, 120(41), 23883–23891; https://doi.org/10.1021/acs.jpcc.6b08481.Search in Google Scholar

Bai, J.; Zhong, X.; Jiang, S.; Huang, Y.; Duan, X. Graphene nanomesh. Nat. Nanotechnol. 2010, 5, 190; https://doi.org/10.1038/nnano.2010.8.Search in Google Scholar PubMed PubMed Central

Bai, Y.; Yang, X.; He, Y.; Zhang, J.; Kang, L.; Xu, H.; Shi, F.; Lei, Z.; Liu, Z.-H. Formation process of holey graphene and its assembled binder-free film electrode with high volumetric capacitance. Electrochim. Acta 2016, 187, 543–551; https://doi.org/10.1016/j.electacta.2015.11.090.Search in Google Scholar

Bano, S.; Mahmood, A.; Kim, S.-J.; Lee, K.-H. Graphene oxide modified polyamide nanofiltration membrane with improved flux and antifouling properties. J. Mater. Chem. 2015, 3(5), 2065–2071; https://doi.org/10.1039/c4ta03607g.Search in Google Scholar

Berean, K. J.; Ou, J. Z.; Daeneke, T.; Carey, B. J.; Nguyen, E. P.; Wang, Y.; Russo, S. P.; Kaner, R. B.; Kalantar-zadeh, K. 2D MoS2 PDMS nanocomposites for NO2 separation. Small 2015, 11(38), 5035–5040; https://doi.org/10.1002/smll.201501129.Search in Google Scholar PubMed

Bhatti, S. A.; Memon, F. H.; Rehman, F.; Bhatti, Z.; Naqvi, T.; Thebo, K. H. Recent progress in decontamination system against chemical and biological materials: challenges and future perspectives. Rev. Inorg. Chem. 2021, 000010151520210019; https://doi.org/10.1515/revic-2021-0019.Search in Google Scholar

Chandio, I.; Janjhi, F. A.; Memon, A. A.; Memon, S.; Ali, Z.; Thebo, K. H.; Khan, W. S. Ultrafast ionic and molecular sieving through graphene oxide based composite membranes. Desalination 2021, 114848; https://doi.org/10.1016/j.desal.2020.114848.Search in Google Scholar

Chen, L.; Shi, G.; Shen, J.; Peng, B.; Zhang, B.; Wang, Y.; Bian, F.; Wang, J.; Li, D.; Qian, Z.; Xu, G.; Liu, G.; Zeng, J.; Zhang, L.; Yang, Y.; Zhou, G.; Wu, M.; Jin, W.; Li, J.; Fang, H. Ion sieving in graphene oxide membranes via cationic control of interlayer spacing. Nature 2017a, 550, 380; https://doi.org/10.1038/nature24044.Search in Google Scholar PubMed

Chen, Y.; Gao, H.; Wei, D.; Dong, X.; Cao, Y. Langmuir-blodgett assembly of visible light responsive TiO2 nanotube arrays/graphene oxide heterostructure. Appl. Surf. Sci. 2017b, 392(Supplement C), 1036–1042; https://doi.org/10.1016/j.apsusc.2016.09.015.Search in Google Scholar

Cheng, X. Q.; Zhang, C.; Wang, Z. X.; Shao, L. Tailoring nanofiltration membrane performance for highly-efficient antibiotics removal by mussel-inspired modification. J. Membr. Sci. 2016, 499, 326–334; https://doi.org/10.1016/j.memsci.2015.10.060.Search in Google Scholar

Choi, K.; Droudian, A.; Wyss, R. M.; Schlichting, K.-P.; Park, H. G. Multifunctional wafer-scale graphene membranes for fast ultrafiltration and high permeation gas separation. Sci. Adv. 2018, 4(11), eaau0476; https://doi.org/10.1126/sciadv.aau0476.Search in Google Scholar PubMed PubMed Central

Ciesielski, A.; Samorì, P. Graphene via sonication assisted liquid-phase exfoliation. Chem. Soc. Rev. 2014, 43(1), 381–398; https://doi.org/10.1039/c3cs60217f.Search in Google Scholar PubMed

Cohen-Tanugi, D.; Grossman, J. C. Water desalination across nanoporous graphene. Nano Lett. 2012, 12(7), 3602–3608; https://doi.org/10.1021/nl3012853.Search in Google Scholar PubMed

Cruz-Silva, A.; Morelos-Gomez, R.; Kim, H.-i.; Jang, H.-k.; Tristan, F.; Vega-Diaz, S.; Rajukumar, L. P.; Elías, A. L.; Perea-Lopez, N.; Suhr, J.; Endo, M.; Terrones, M. Super-stretchable graphene oxide macroscopic fibers with outstanding knotability fabricated by dry film scrolling. ACS Nano 2014, 8(6), 5959–5967; https://doi.org/10.1021/nn501098d.Search in Google Scholar PubMed

Cote, L. J.; Kim, F.; Huang, J. Langmuir−blodgett assembly of graphite oxide single layers. J. Am. Chem. Soc. 2009, 131(3), 1043–1049; https://doi.org/10.1021/ja806262m.Search in Google Scholar PubMed

Deegan, R. D.; Bakajin, O.; Dupont, T. F.; Huber, G.; Nagel, S. R.; Witten, T. A. Capillary flow as the cause of ring stains from dried liquid drops. Nature 1997, 389(6653), 827–829; https://doi.org/10.1038/39827.Search in Google Scholar

Dikin, D. A.; Stankovich, S.; Zimney, E. J.; Piner, R. D.; Dommett, G. H. B.; Evmenenko, G.; Nguyen, S. T.; Ruoff, R. S. Preparation and characterization of graphene oxide paper. Nature 2007, 448(7152), 457–460; https://doi.org/10.1038/nature06016.Search in Google Scholar PubMed

Dreyer, D. R.; Park, S.; Bielawski, C. W.; Ruoff, R. S. The chemistry of graphene oxide. Chem. Soc. Rev. 2010, 39(1), 228–240; https://doi.org/10.1039/b917103g.Search in Google Scholar PubMed

Eigler, S.; Hirsch, A. Chemistry with graphene and graphene oxide—challenges for synthetic chemists. Angew. Chem. Int. Ed. 2014, 53(30), 7720–7738; https://doi.org/10.1002/anie.201402780.Search in Google Scholar PubMed

Fathizadeh, M.; Tien, H. N.; Khivantsev, K.; Chen, J.-T.; Yu, . M. Printing ultrathin graphene oxide nanofiltration membranes for water purification. J. Mater. Chem. 2017, 5(39), 20860–20866; https://doi.org/10.1039/c7ta06307e.Search in Google Scholar

Feng, J.; Liu, K.; Bulushev, R. D.; Khlybov, S.; Dumcenco, D.; Kis, A.; Radenovic, A. Identification of single nucleotides in MoS2 nanopores. Nat. Nanotechnol. 2015, 10, 1070; https://doi.org/10.1038/nnano.2015.219.Search in Google Scholar PubMed

Fischbein, M. D.; Drndić, M. Electron beam nanosculpting of suspended graphene sheets. Appl. Phys. Lett. 2008, 93(11), 113107; https://doi.org/10.1063/1.2980518.Search in Google Scholar

Gai, J.-G.; Gong, X.-L. Zero internal concentration polarization FO membrane: functionalized graphene. J. Mater. Chem. 2014, 2(2), 425–429; https://doi.org/10.1039/c3ta13562d.Search in Google Scholar

Gai, J.-G.; Gong, X.-L.; Wang, W.-W.; Zhang, X.; Kang, W.-L. An ultrafast water transport forward osmosis membrane: porous graphene. J. Mater. Chem. 2014, 2(11), 4023–4028; https://doi.org/10.1039/c3ta14256f.Search in Google Scholar

Gao, S. J.; Qin, H.; Liu, P.; Jin, J. SWCNT-intercalated GO ultrathin films for ultrafast separation of molecules. J. Mater. Chem. 2015, 3(12), 6649–6654; https://doi.org/10.1039/c5ta00366k.Search in Google Scholar

Gao, T.; Huang, L.; Li, C.; Xu, G.; Shi, G. Graphene membranes with tuneable nanochannels by intercalating self-assembled porphyrin molecules for organic solvent nanofiltration. Carbon 2017, 124, 263–270; https://doi.org/10.1016/j.carbon.2017.08.042.Search in Google Scholar

Garaj, S.; Hubbard, W.; Reina, A.; Kong, J.; Branton, D.; Golovchenko, J. A. Graphene as a subnanometre trans-electrode membrane. Nature 2010, 467, 190; https://doi.org/10.1038/nature09379.Search in Google Scholar PubMed PubMed Central

Geim, A. K.; Novoselov, K. S. The rise of graphene. Nat. Mater. 2007, 6(3), 183–191; https://doi.org/10.1038/nmat1849.Search in Google Scholar PubMed

Guan, K.; Liang, F.; Zhu, H.; Zhao, J.; Jin, W. Incorporating graphene oxide into alginate polymer with a cationic intermediate to strengthen membrane dehydration performance.J. ACS Appl. Mater. Interfaces 2018, 10(16), 13903–13913; https://doi.org/10.1021/acsami.8b04093.Search in Google Scholar PubMed

Han, T. H.; Huang, Y.-K.; Tan, A. T. L.; Dravid, V. P.; Huang, J. Steam etched porous Graphene oxide network for chemical sensing. Am. Chem. Soc. 2011, 133(39), 15264–15267; https://doi.org/10.1021/ja205693t.Search in Google Scholar PubMed

Han, X.; Funk, M. R.; Shen, F.; Chen, Y.-C.; Li, Y.; Campbell, C. J.; Dai, J.; Yang, X.; Kim, J.-W.; Liao, Y.; Connell, J. W.; Barone, V.; Chen, Z.; Lin, Y.; Hu, Lu. Scalable holey graphene synthesis and dense electrode fabrication toward high-performance ultracapacitors. ACS Nano 2014, 8(8), 8255–8265; https://doi.org/10.1021/nn502635y.Search in Google Scholar PubMed

Han, Y.; Jiang, Y.; Gao, C. High-flux graphene oxide nanofiltration membrane intercalated by carbon nanotubes. ACS Appl. Mater. Interfaces 2015, 7(15), 8147–8155; https://doi.org/10.1021/acsami.5b00986.Search in Google Scholar PubMed

Han, Y.; Xu, Z.; Gao, C. Ultrathin graphene nanofiltration membrane for water purification. Adv. Funct. Mater. 2013, 23(29), 3693–3700; https://doi.org/10.1002/adfm.201202601.Search in Google Scholar

He, Z.; Zhou, J.; Lu, X.; Corry, B. Bioinspired graphene nanopores with voltage-tunable ion selectivity for Na+ and K+. ACS Nano 2013, 7(11), 10148–10157; https://doi.org/10.1021/nn4043628.Search in Google Scholar PubMed

Heiranian, M.; Farimani, A. B.; Aluru, N. R. Water desalination with a single-layer MoS2 nanopore. Nat. Commun. 2015, 6, 8616; https://doi.org/10.1038/ncomms9616.Search in Google Scholar PubMed PubMed Central

Hou, Y.; Xu, Z.; Yang, X. Interface-induced affinity sieving in nanoporous graphenes for liquid-phase mixtures. J. Phys. Chem. C 2016, 120(7), 4053–4060; https://doi.org/10.1021/acs.jpcc.5b10287.Search in Google Scholar

Hu, M.; Mi, B. Enabling graphene oxide nanosheets as water separation membranes. Environ. Sci. Technol. 2013, 47(8), 3715–3723; https://doi.org/10.1021/es400571g.Search in Google Scholar PubMed

Hu, M.; Mi, B. Layer-by-layer assembly of graphene oxide membranes via electrostatic interaction. J. Membr. Sci. 2014, 469, 80–87; https://doi.org/10.1016/j.memsci.2014.06.036.Search in Google Scholar

Huang, H.; Song, Z.; Wei, N.; Shi, L.; Mao, Y.; Ying, Y.; Sun, L.; Xu, Z.; Peng, X. Ultrafast viscous water flow through nanostrand-channelled graphene oxide membranes. Nat. Commun. 2013, 4, 2979; https://doi.org/10.1038/ncomms3979.Search in Google Scholar PubMed

Hu, X.; Rajendran, S.; Yao, Y.; Liu, Z.; Gopalsamy, K.; Peng, L.; Gao, C. A novel wet-spinning method of manufacturing continuous bio-inspired composites based on graphene oxide and sodium alginate. Nano Res 2016, 9(3), 735–744; https://doi.org/10.1007/s12274-015-0952-2.Search in Google Scholar

Huang, T.; An, Q.; Luan, X.; Zhang, Q.; Zhang, Y. Free-standing few-layered graphene oxide films: selective, steady and lasting permeation of organic molecules with adjustable speeds. Nanoscale 2016, 8(4), 2003–2010; https://doi.org/10.1039/c5nr08129g.Search in Google Scholar PubMed

Huang, T.; Zheng, B.; Liu, Z.; Kou, L.; Gao, C. High rate capability supercapacitors assembled from wet-spun graphene films with a CaCO3 template. J. Mater. Chem. 2015, 3(5), 1890–1895; https://doi.org/10.1039/c4ta06533f.Search in Google Scholar

Hussain, S.; Li, Y.; Memon, F. H.; Hussain, S.; Li, Li.; Thebo, K. H. Studies on the effects of pre-firing and sintering temperature on NSDC nanocomposite electrolytes. Prog. Nat. Sci. Mater. Int. 2021a, 32(1), 128–134.10.1016/j.pnsc.2021.10.003Search in Google Scholar

Hussain, S.; Li, Y.; Mustehsin, A.; Ali, A.; Thebo, K. H.; Ali, Z.; Hussain, S. Synthesis and characterization of ZnO/samarium-doped ceria nanocomposites for solid oxide fuel cell applications. Ionics 2021b, 27, 4849–4857; https://doi.org/10.1007/s11581-021-04246-z.Search in Google Scholar

Hussain, S.; Li, Y.; Thebo, K. H.; Ali, Z.; Owais, M.; Hussain, S. Effect of iron oxide co-doping on structural, thermal, and electrochemical properties of samarium doped ceria solid electrolyte. Mater. Chem. Phys. 2021c, 267, 124576; https://doi.org/10.1016/j.matchemphys.2021.124576.Search in Google Scholar

Iqbal, M.; Ali, A.; Ahmad, K. S.; Rana, F. M.; Khan, J.; Khan, K.; Thebo, K. H. Synthesis and characterization of transition metals doped CuO nanostructure and their application in hybrid bulk heterojunction solar cells. SN Appl. Sci. 2019a, 1(6), 647; https://doi.org/10.1007/s42452-019-0663-5.Search in Google Scholar

Iqbal, M.; Ali, A.; Nahyoon, N. A.; Majeed, A.; Pothu, R.; Phulpoto, S.; Thebo, K. H. Photocatalytic degradation of organic pollutant with nanosized cadmium sulfide. Mater. Sci. Energy Technol. 2019b, 2(1), 41–45; https://doi.org/10.1016/j.mset.2018.09.002.Search in Google Scholar

Iqbal, M.; Ibrar, A.; Ali, A.; Rehman, F.; Jatoi, A. H.; Jatoi, W. B.; Thebo, K. H. Facile synthesis of Zn Doped CdS nanowires with efficient photocatalytic performance. Environ. Technol. 2020a, 41, 1–8; https://doi.org/10.1080/09593330.2020.1850880.Search in Google Scholar PubMed

Iqbal, M.; Thebo, A. A.; Jatoi, W. B.; Tabassum, M. T.; Rehman, M. U.; Thebo, K. H.; Shah, I. Facile synthesis of Cr doped hierarchical ZnO nano-structures for enhanced photovoltaic performance. Inorg. Chem. Commun. 2020b, 116, 107902; https://doi.org/10.1016/j.inoche.2020.107902.Search in Google Scholar

Iqbal, M.; Thebo, A. A.; Shah, A. H.; Iqbal, A.; Thebo, K. H.; Phulpoto, S.; Mohsin, M. A. Influence of Mn-doping on the photocatalytic and solar cell efficiency of CuO nanowires. Inorg. Chem. Commun. 2017, 76, 71–76; https://doi.org/10.1016/j.inoche.2016.11.023.Search in Google Scholar

Jaffri, S. B.; Ahmad, K. S.; Thebo, K. H.; Rehman, F. Recent developments in carbon nanotubes-based perovskite solar cells with boosted efficiency and stability. Z. Phys. Chem. 2021, 235(12), 1539–1572; https://doi.org/10.1515/zpch-2020-1729.Search in Google Scholar

Jain, T.; Rasera, B. C.; Guerrero, R. J. S.; Boutilier, M. S. H.; O’Hern, S. C.; Idrobo, J.-C.; Karnik, K. Heterogeneous sub-continuum ionic transport in statistically isolated graphene nanopores. Nat. Nanotechnol. 2015, 10, 1053; https://doi.org/10.1038/nnano.2015.222.Search in Google Scholar PubMed

Jeong, J.-T.; Choi, M.-K.; Sim, Y.; Lim, J.-T.; Kim, G.-S.; Seong, M.-J.; Hyung, J.-H.; Kim, K. S.; Umar, A.; Lee, S.-K. Effect of graphene oxide ratio on the cell adhesion and growth behavior on a graphene oxide-coated silicon substrate. Sci. Rep. 2016, 6(1), 33835; https://doi.org/10.1038/srep33835.Search in Google Scholar PubMed PubMed Central

Jia, Z.; Wang, Y. Covalently crosslinked graphene oxide membranes by esterification reactions for ions separation. J. Mater. Chem. 2015, 3(8), 4405–4412; https://doi.org/10.1039/c4ta06193d.Search in Google Scholar

Kang, Y.; Zhang, Z.; Shi, H.; Zhang, J.; Liang, L.; Wang, Q.; Ågren, H.; Tu, Y. Na+ and K+ ion selectivity by size-controlled biomimetic graphene nanopores. Nanoscale 2014, 6(18), 10666–10672; https://doi.org/10.1039/c4nr01383b.Search in Google Scholar PubMed

Kazemi, A.; He, X.; Alaie, S.; Ghasemi, J.; Dawson, N. M.; Cavallo, F.; Habteyes, T. G.; Brueck, S. R. J.; Krishna, S. Large-area semiconducting graphene nanomesh tailored by interferometric lithography. Sci. Rep. 2015, 5, 11463; https://doi.org/10.1038/srep11463.Search in Google Scholar PubMed PubMed Central

Kelly, K. F.; Billups, W. E. Synthesis of soluble graphite and graphene. Acc. Chem. Res. 2013, 46(1), 4–13; https://doi.org/10.1021/ar300121q.Search in Google Scholar PubMed

Khan, J.; Ullah, H.; Sajjad, M.; Ali, A.; Thebo, K. H. Synthesis, characterization and electrochemical performance of cobalt fluoride nanoparticles by reverse micro-emulsion method. Inorg. Chem. Commun. 2018, 98, 132–140; https://doi.org/10.1016/j.inoche.2018.10.018.Search in Google Scholar

Khan, J.; Ullah, H.; Sajjad, M.; Bahadar, A.; Bhatti, Z.; Soomro, F.; Memon, F. H.; Iqbal, M.; Rehman, F.; Thebo, K. H. High yield synthesis of transition metal fluorides (CoF2, NiF2, and NH4MnF3) nanoparticles with excellent electrochemical performance. Inorg. Chem. Commun. 2021, 130, 108751; https://doi.org/10.1016/j.inoche.2021.108751.Search in Google Scholar

Khan, J.; Ullah, H.; Sajjad, M.; Jatoi, W. B.; Ali, A.; Khan, K.; Thebo, K. H. Controlled synthesis of ammonium manganese tri-fluoride nanoparticles with enhanced electrochemical performance. Mater. Res. Express 2019, 6(7), 075074; https://doi.org/10.1088/2053-1591/ab18bb.Search in Google Scholar

Kidambi, P. R.; Mariappan, D. D.; Dee, N. T.; Vyatskikh, A.; Zhang, S.; Karnik, R.; Hart, A. J. A scalable route to nanoporous large-area atomically thin graphene membranes by roll-to-roll chemical vapor deposition and polymer support casting. ACS Appl. Mater. Interfaces 2018, 10(12), 10369–10378; https://doi.org/10.1021/acsami.8b00846.Search in Google Scholar PubMed

Kim, H. W.; Yoon, H. W.; Yoon, S.-M.; Yoo, B. M.; Ahn, B. K.; Cho, Y. H.; Shin, H. J.; Yang, H.; Paik, U.; Kwon, S.; Choi, J.-Y.; Park, H. B. Selective gas transport through few-layered graphene and graphene oxide membranes. Science 2013, 342(6154), 91–95; https://doi.org/10.1126/science.1236098.Search in Google Scholar PubMed

Koenig, S. P.; Wang, L. D.; Pellegrino, J.; Bunch, J. S. Selective molecular sieving through porous graphene. Nat. Nanotechnol. 2012, 7(11), 728–732; https://doi.org/10.1038/nnano.2012.162.Search in Google Scholar PubMed

Kou, J.; Zhou, X.; Lu, H.; Wu, F.; Fan, J. Graphyne as the membrane for water desalination. Nanoscale 2014, 6(3), 1865–1870; https://doi.org/10.1039/c3nr04984a.Search in Google Scholar PubMed

Kou, L.; Liu, Z.; Huang, T.; Zheng, B.; Tian, Z.; Deng, Z.; Gao, C. Wet-spun, porous, orientational graphene hydrogel films for high-performance supercapacitor electrodes. Nanoscale 2015, 7(9), 4080–4087; https://doi.org/10.1039/c4nr07038k.Search in Google Scholar PubMed

Krueger, M.; Berg, S.; Stone, D. A.; Strelcov, E.; Dikin, D. A.; Kim, J.; Cote, L. J.; Huang, J.; Kolmakov, A. Drop-casted self-assembling graphene oxide membranes for scanning electron microscopy on wet and dense gaseous samples. ACS Nano 2011, 5(12), 10047–10054; https://doi.org/10.1021/nn204287g.Search in Google Scholar PubMed

Kulkarni, D. D.; Choi, I.; Singamaneni, S. S.; Tsukruk, V. V. Graphene oxide−polyelectrolyte nanomembranes. ACS Nano 2010, 4(8), 4667–4676; https://doi.org/10.1021/nn101204d.Search in Google Scholar PubMed

Lee, Y. M.; Jung, B.; Kim, Y. H.; Park, A. R.; Han, S.; Choe, W.-S.; Yoo, P. J. Nanomesh-structured ultrathin membranes harnessing the unidirectional alignment of viruses on a graphene-oxide Film. Adv. Mater. 2014, 26(23), 3899–3904; https://doi.org/10.1002/adma.201305862.Search in Google Scholar PubMed

Lehtinen, O.; Kotakoski, J.; Krasheninnikov, A. V.; Keinonen, J. Cutting and controlled modification of graphene with ion beams. Nanotechnology 2011, 22(17), 175306; https://doi.org/10.1088/0957-4484/22/17/175306.Search in Google Scholar PubMed

Li, W.; Yang, Y.; Weber, J.K.; Zhang, G.; Zhou, R. Tunable, strain-controlled nanoporous MoS2 filter for water desalination. ACS Nano 2016, 10(2), 1829–1835; https://doi.org/10.1021/acsnano.5b05250.Search in Google Scholar PubMed

Li, X.; Zhang, G.; Bai, X.; Sun, X.; Wang, X.; Wang, E.; Dai, H. Highly conducting graphene sheets and Langmuir-blodgett films. Nat. Nanotechnol. 2008, 3(9), 538–542; https://doi.org/10.1038/nnano.2008.210.Search in Google Scholar PubMed

Li, Y.; Alain-Rizzo, V.; Galmiche, L.; Audebert, P.; Miomandre, F.; Louarn, G.; Bozlar, M.; Pope, M. A.; Dabbs, D. M.; Aksay, I. A. Functionalization of graphene oxide by tetrazine derivatives: a versatile approach toward covalent bridges between graphene sheets. Chem. Mater. 2015, 27(12), 4298–4310; https://doi.org/10.1021/acs.chemmater.5b00672.Search in Google Scholar

Lin, L.-C.; Grossman, J. C. Atomistic understandings of reduced graphene oxide as an ultrathin-film nanoporous membrane for separations. Nat. Commun. 2015, 6, 8335; https://doi.org/10.1038/ncomms9335.Search in Google Scholar PubMed PubMed Central

Liu, G.; Jin, W.; Xu, N. Two-dimensional-material membranes: a new family of high-performance separation membranes. Angew. Chem. Int. Ed. 2016, 55(43), 13384–13397; https://doi.org/10.1002/anie.201600438.Search in Google Scholar PubMed

Liu, J.; Cai, H.; Yu, X.; Zhang, K.; Li, X.; Li, J.; Pan, N.; Shi, Q.; Luo, Y.; Wang, X. Fabrication of graphene nanomesh and improved chemical enhancement for Raman spectroscopy. J. Phys. Chem. C 2012, 116(29), 15741–15746; https://doi.org/10.1021/jp303265d.Search in Google Scholar

Liu, K.; Feng, J.; Kis, A.; Radenovic, A. Atomically thin molybdenum disulfide nanopores with high sensitivity for DNA translocation. ACS Nano 2014a, 8(3), 2504–2511; https://doi.org/10.1021/nn406102h.Search in Google Scholar PubMed

Liu, Z.; Li, Z.; Xu, Z.; Xia, Z.; Hu, X.; Kou, L.; Peng, L.; Wei, Y.; Gao, C. Wet-spun continuous graphene films. Chem. Mater. 2014b, 26(23), 6786–6795; https://doi.org/10.1021/cm5033089.Search in Google Scholar

Long, Y.; Wang, K.; Xiang, G.; Song, K.; Zhou, G.; Wang, X. Molecule channels directed by cation-decorated graphene oxide nanosheets and their application as membrane reactors. Adv. Mater. 2017, 29(16), 1606093; https://doi.org/10.1002/adma.201606093.Search in Google Scholar PubMed

Luo, J.; Cote, L. J.; Tung, V. C.; Tan, A. T. L.; Goins, P. E.; Wu, J.; Huang, J. Graphene oxide nanocolloids. J. Am. Chem. Soc. 2010, 132(50), 17667–17669; https://doi.org/10.1021/ja1078943.Search in Google Scholar PubMed

Luo, J.; Jang, H. D.; Sun, T.; Xiao, L.; He, Z.; Katsoulidis, A. P.; Kanatzidis, M. G.; Gibson, J. M.; Huang, J. Compression and aggregation-resistant particles of crumpled soft sheets. ACS Nano 2011, 5(11), 8943–8949; https://doi.org/10.1021/nn203115u.Search in Google Scholar PubMed

Mahar, I.; Memon, F. H.; Lee, J.-W.; Kim, K. H.; Ahmed, R.; Soomro, F.; Rehman, F.; Memon, A. A.; Thebo, K. H.; Choi, K. H. Two-dimensional transition metal carbides and nitrides (MXenes) for water purification and antibacterial applications. Membranes 2021, 11(11), 869; https://doi.org/10.3390/membranes11110869.Search in Google Scholar PubMed PubMed Central

Maqbool, I.; Rehman, F.; Soomro, F.; Bhatti, Z.; Ali, U.; Jatoi, A. H.; Lal, B.; Iqbal, M.; Phulpoto, S.; Ali, A.; Thebo, K. H. Graphene-based materials for fighting coronavirus disease 2019: challenges and opportunities. ChemBioEng Rev. 2021, 8(2), 67–77; https://doi.org/10.1002/cben.202000039.Search in Google Scholar

Memon, F. H.; Rehman, F.; Lee, J.; Soomro, F.; Iqbal, M.; Khan, S. M.; Ali, A.; Thebo, K. H.; Choi, K. H. Transition metal dichalcogenide-based membranes for water desalination, gas separation, and energy storage. Separ. Purif. Rev. 2022, 1–15; https://doi.org/10.1080/15422119.2022.2037000.Search in Google Scholar

Morelos-Gomez, A.; Cruz-Silva, R.; Muramatsu, H.; Ortiz-Medina, J.; Araki, T.; Fukuyo, T.; Tejima, S.; Takeuchi, K.; Hayashi, T.; Terrones, M.; Endo, M. Effective NaCl and dye rejection of hybrid graphene oxide/graphene layered membranes. Nat. Nanotechnol. 2017, 12(11), 1083–1088; https://doi.org/10.1038/nnano.2017.160.Search in Google Scholar PubMed

Nahyoon, N. A.; Liu, L.; Rabe, K.; Thebo, K. H.; Yuan, L.; Sun, J.; Yang, F. Significant photocatalytic degradation and electricity generation in the photocatalytic fuel cell (PFC) using novel anodic nanocomposite of Fe, graphene oxide, and titanium phosphate. Electrochim. Acta 2018, 271, 41–48; https://doi.org/10.1016/j.electacta.2018.03.109.Search in Google Scholar

Nam, Y. T.; Choi, J.; Kang, K. M.; Kim, D. W.; Jung, H.-T. Enhanced stability of laminated graphene oxide membranes for nanofiltration via interstitial amide bonding. ACS Appl. Mater. Interfaces 2016, 8(40), 27376–27382; https://doi.org/10.1021/acsami.6b09912.Search in Google Scholar PubMed

Nan, Q.; Li, P.; Cao, B. Fabrication of positively charged nanofiltration membrane via the layer-by-layer assembly of graphene oxide and polyethylenimine for desalination. Appl. Surf. Sci. 2016, 387, 521–528; https://doi.org/10.1016/j.apsusc.2016.06.150.Search in Google Scholar

O’Hern, S. C.; Boutilier, M. S. H.; Idrobo, J.-C.; Song, Y.; Kong, J.; Laoui, T.; Atieh, M.; Karnik, R. Selective ionic transport through tunable subnanometer pores in single-layer graphene membranes. Nano Lett. 2014, 14(3), 1234–1241; https://doi.org/10.1021/nl404118f.Search in Google Scholar PubMed

O’Hern, S. C.; Jang, D.; Bose, S.; Idrobo, J.-C.; Song, Y.; Laoui, T.; Kong, J.; Karnik, R. Nanofiltration across defect-sealed nanoporous monolayer graphene. Nano Lett. 2015, 15(5), 3254–3260; https://doi.org/10.1021/acs.nanolett.5b00456.Search in Google Scholar PubMed

Oh, Y.; Armstrong, D. L.; Finnerty, C.; Zheng, S.; Hu, M.; Torrents, A.; Mi, B. Understanding the pH-responsive behavior of graphene oxide membrane in removing ions and organic micropollulants. J. Membr. Sci. 2017, 541, 235–243; https://doi.org/10.1016/j.memsci.2017.07.005.Search in Google Scholar

Penicaud, A.; Drummond, C. Deconstructing graphite: graphenide solutions. Acc. Chem. Res. 2013, 46(1), 129–137; https://doi.org/10.1021/ar300141s.Search in Google Scholar PubMed

Perreault, F.; Fonseca de Faria, A.; Elimelech, M. Environmental applications of graphene-based nanomaterials. Chem. Soc. Rev. 2015, 44(16), 5861–5896; https://doi.org/10.1039/c5cs00021a.Search in Google Scholar PubMed

Pham, V. H.; Cuong, T. V.; Hur, S. H.; Shin, E. W.; Kim, J. S.; Chung, J. S.; Kim, E. J. Fast and simple fabrication of a large transparent chemically-converted graphene film by spray-coating. Carbon 2010, 48(7), 1945–1951; https://doi.org/10.1016/j.carbon.2010.01.062.Search in Google Scholar

Qi, B.; He, X.; Zeng, G.; Pan, Y.; Li, G.; Liu, G.; Zhang, Y.; Chen, W.; Sun, Y. Strict molecular sieving over electrodeposited 2D-interspacing-narrowed graphene oxide membranes. Nat. Commun. 2017, 8(1), 825; https://doi.org/10.1038/s41467-017-00990-x.Search in Google Scholar PubMed PubMed Central

Qian, X.; Chen, L.; Yin, L.; Liu, Z.; Pei, S.; Li, F.; Hou, G.; Chen, S.; Song, L.; Thebo, K. H.; Cheng, H. M.; Ren, W. CdPS3 nanosheets-based membrane with high proton conductivity enabled by Cd vacancies. Science 2020, 370(6516), 596–600; https://doi.org/10.1126/science.abb9704.Search in Google Scholar PubMed

Qiu, L.; Zhang, X.; Yang, W.; Wang, Y.; Simon, G. P.; Li, D. Controllable corrugation of chemically converted graphene sheets in water and potential application for nanofiltration. Chem. Commun. 2011, 47(20), 5810–5812; https://doi.org/10.1039/c1cc10720h.Search in Google Scholar PubMed

Rehman, F.; Memon, F. H.; Bhatti, Z.; Iqbal, M.; Soomro, F.; Ali, A.; Thebo, K. H. Graphene-based composite membranes for isotope separation: challenges and opportunities. Rev. Inorg. Chem. 2021, 0035; https://doi.org/10.1515/revic-2021-0035 .Search in Google Scholar

Rehman, F.; Thebo, K. H.; Aamir, M.; Akhtar, J. Chapter 8 – Nanomembranes for water treatment. In Nanotechnology in the Beverage Industry; Amrane, A., Rajendran, S., Nguyen, T. A., Assadi, A. A., Sharoba, A. M., Eds. Elsevier, 2020; pp. 207–240; https://doi.org/10.1016/b978-0-12-819941-1.00008-0.Search in Google Scholar

Rollings, R. C.; Kuan, A. T.; Golovchenko, J. A. Ion selectivity of graphene nanopores. Nat. Commun. 2016, 7, 11408; https://doi.org/10.1038/ncomms11408.Search in Google Scholar PubMed PubMed Central

Russo, C. J.; Golovchenko, J. A. Atom-by-atom nucleation and growth of graphene nanopores. Proc. Natl. Acad. Sci. Unit. States Am. 2012, 109(16), 5953–5957; https://doi.org/10.1073/pnas.1119827109.Search in Google Scholar PubMed PubMed Central

Sharif, S.; Ahmad, K. S.; Memon, F. H.; Rehman, F.; Soomro, F.; Thebo, K. H. Functionalised graphene oxide-based nanofiltration membranes with enhanced molecular separation performance. Mater. Res. Innovat. 2021a, 1–9; https://doi.org/10.1080/14328917.2021.2006907.Search in Google Scholar

Sharif, S.; Ahmad, K. S.; Rehman, F.; Bhatti, Z.; Thebo, K. H. Two-dimensional graphene oxide based membranes for ionic and molecular separation: current status and challenges. J. Environ. Chem. Eng. 2021b, 25, 105605; https://doi.org/10.1016/j.jece.2021.105605.Search in Google Scholar

Sint, K.; Wang, B.; Král, P. Selective ion passage through functionalized graphene nanopores. J. Am. Chem. Soc. 2008, 130(49), 16448–16449; https://doi.org/10.1021/ja804409f.Search in Google Scholar PubMed

Song, X.; Zambare, R. S.; Qi, S.; Sowrirajalu, B. N. I. L.; James Selvaraj, A. P.; Tang, C. Y.; Gao, C. Charge-gated ion transport through polyelectrolyte intercalated amine reduced graphene oxide membranes. ACS Appl. Mater. Interfaces 2017, 9(47), 41482–41495; https://doi.org/10.1021/acsami.7b13724.Search in Google Scholar PubMed

Sun, P.; Chen, Q.; Li, X.; Liu, H.; Wang, K.; Zhong, M.; Wei, J.; Wu, D.; Ma, R.; Sasaki, T.; Zhu, H. Highly efficient quasi-static water desalination using monolayer graphene oxide/titania hybrid laminates. NPG Asia Mater. 2015, 7, e162; https://doi.org/10.1038/am.2015.7.Search in Google Scholar

Sun, P.; Ma, R.; Ma, W.; Wu, J.; Wang, K.; Sasaki, T.; Zhu, H. Highly selective charge-guided ion transport through a hybrid membrane consisting of anionic graphene oxide and cationic hydroxide nanosheet superlattice units. NPG Asia Mater. 2016, 8, 10; https://doi.org/10.1038/am.2016.38.Search in Google Scholar

Sun, P.; Zhu, M.; Wang, K.; Zhong, M.; Wei, J.; Wu, D.; Xu, Z.; Zhu, H. Selective ion penetration of graphene oxide membranes. ACS Nano 2013, 7(1), 428–437; https://doi.org/10.1021/nn304471w.Search in Google Scholar PubMed

Surwade, S. P.; Smirnov, S. N.; Vlassiouk, I. V.; Unocic, R. R.; Veith, G. M.; Dai, S.; Mahurin, S. M. Water desalination using nanoporous single-layer graphene. Nat. Nanotechnol. 2015, 10(5), 459–464; https://doi.org/10.1038/nnano.2015.37.Search in Google Scholar PubMed

Thebo, K. H.; Qian, X.; Wei, Q.; Zhang, Q.; Cheng, H.-M.; Ren, W. Reduced graphene oxide/metal oxide nanoparticles composite membranes for highly efficient molecular separation. J. Mater. Sci. Technol. 2018a, 34(9), 1481–1486; https://doi.org/10.1016/j.jmst.2018.05.008.Search in Google Scholar

Thebo, K. H.; Qian, X.; Zhang, Q.; Chen, L.; Cheng, H. M.; Ren, W. Highly stable graphene-oxide-based membranes with superior permeability. Nat. Commun. 2018b, 9(1), 1486; https://doi.org/10.1038/s41467-018-03919-0.Search in Google Scholar PubMed PubMed Central

Tsou, C.-H.; An, Q.-F.; Lo, S.-C.; De Guzman, M.; Hung, W.-S.; Hu, C.-C.; Lee, K.-R.; Lai, J.-Y. Effect of microstructure of graphene oxide fabricated through different self-assembly techniques on 1-butanol dehydration. J. Membr. Sci. 2015, 477, 93–100; https://doi.org/10.1016/j.memsci.2014.12.039.Search in Google Scholar

Wan, J.; Huang, L.; Wu, J.; Xiong, L.; Hu, Z.; Yu, H.; Li, T.; Zhou, J. Microwave combustion for rapidly synthesizing pore-size-controllable porous graphene. Adv. Funct. Mater. 2018, 28(22), 1800382; https://doi.org/10.1002/adfm.201800382.Search in Google Scholar

Wang, L.; Boutilier, M. S. H.; Kidambi, P. R.; Jang, D.; Hadjiconstantinou, N. G.; Karnik, R. Fundamental transport mechanisms, fabrication and potential applications of nanoporous atomically thin membranes. Nat. Nanotechnol. 2017, 12(6), 509–522; https://doi.org/10.1038/nnano.2017.72.Search in Google Scholar PubMed

Wang, W.; Eftekhari, E.; Zhu, G.; Zhang, X.; Yan, Z.; Li, Q. Graphene oxide membranes with tunable permeability due to embedded carbon dots. Chem. Commun. 2014, 50(86), 13089–13092; https://doi.org/10.1039/c4cc05295a.Search in Google Scholar PubMed

Wang, Y.; Chen, S.; Qiu, L.; Wang, K.; Wang, H.; Simon, G. P.; Li, D. Graphene-directed supramolecular assembly of multifunctional polymer hydrogel membranes. Adv. Funct. Mater. 2015, 25(1), 126–133; https://doi.org/10.1002/adfm.201402952.Search in Google Scholar

Wei, G.; Quan, X.; Chen, S.; Yu, H. Superpermeable atomic-thin graphene membranes with high selectivity. ACS Nano 2017, 11(2), 1920–1926; https://doi.org/10.1021/acsnano.6b08000.Search in Google Scholar PubMed

Xi, Y.-H.; Liu, Z.; Ji, J.; Wang, Y.; Faraj, Y.; Zhu, Y.; Xie, R.; Ju, X.-J.; Wang, W.; Lu, X.; Chu, L.-Y. Graphene-based membranes with uniform 2D nanochannels for precise sieving of mono-/multi-valent metal ions. J. Membr. Sci. 2018, 550, 208–218; https://doi.org/10.1016/j.memsci.2017.12.057.Search in Google Scholar

Xu, X.-L.; Lin, F.-W.; Du, Y.; Zhang, X.; Wu, J.; Xu, Z.-K. Graphene oxide nanofiltration membranes stabilized by cationic porphyrin for high salt rejection. ACS Appl. Mater. Interfaces 2016, 8(20), 12588–12593; https://doi.org/10.1021/acsami.6b03693.Search in Google Scholar PubMed

Yang, H.; Wang, N.; Wang, L.; Liu, H.-X.; An, Q.-F.; Ji, S. Vacuum-assisted assembly of ZIF-8@GO composite membranes on ceramic tube with enhanced organic solvent nanofiltration performance. J. Membr. Sci. 2018, 545, 158–166; https://doi.org/10.1016/j.memsci.2017.09.074.Search in Google Scholar

Yeh, C.-N.; Raidongia, K.; Shao, J.; Yang, Q.-H.; Huang, J. On the origin of the stability of graphene oxide membranes in water. Nat. Chem. 2015, 7(2), 166–170; https://doi.org/10.1038/nchem.2145.Search in Google Scholar PubMed

Yi, M.; Shen, Z. A review on mechanical exfoliation for the scalable production of graphene. J. Mater. Chem. 2015, 3(22), 11700–11715; https://doi.org/10.1039/c5ta00252d.Search in Google Scholar

Yilbas, B. S.; Al-Sharafi, A.; Ali, H.; Yilbas, B. S.; Al-Sharafi, A.; Ali, H. Chapter 3 – Surfaces for Self-cleaning. In Self-cleaning of surfaces and water droplet mobility; Elsevier, 2019; pp 45–98; https://doi.org/10.1016/b978-0-12-814776-4.00003-3.Search in Google Scholar

Ying, Y.; Liu, D.; Zhang, W.; Ma, J.; Huang, H.; Yang, Q.; Zhong, C. High-flux graphene oxide membranes intercalated by metal–organic framework with highly selective separation of aqueous organic solution. ACS Appl. Mater. Interfaces 2017, 9(2), 1710–1718; https://doi.org/10.1021/acsami.6b14371.Search in Google Scholar PubMed

Ying, Y.; Sun, L.; Wang, Q.; Fan, Z.; Peng, X. In-plane mesoporous graphene oxide nanosheet assembled membranes for molecular separation. RSC Adv. 2014, 4(41), 21425–21428; https://doi.org/10.1039/c4ra01495b.Search in Google Scholar

Yu, W.; Yu, T.; Graham, N. Development of a stable cation modified graphene oxide membrane for water treatment. 2D Mater. 2017, 4(4), 045006; https://doi.org/10.1088/2053-1583/aa814c.Search in Google Scholar

Zhang, M.; Guan, K.; Shen, J.; Liu, G.; Fan, Y.; Jin, W. Nanoparticles@rGO membrane enabling highly enhanced water permeability and structural stability with preserved selectivity. AIChE J. 2017, 63(11), 5054–5063; https://doi.org/10.1002/aic.15939.Search in Google Scholar

Zhang, Y.; Zhang, L.; Zhou, C. Review of chemical vapor deposition of graphene and related applications. Acc. Chem. Res. 2013, 46(10), 2329–2339; https://doi.org/10.1021/ar300203n.Search in Google Scholar PubMed

Zhang, Y.; Zhang, S.; Chung, T.-S. Nanometric graphene oxide framework membranes with enhanced heavy metal removal via nanofiltration. Environ. Sci. Technol. 2015, 49(16), 10235–10242; https://doi.org/10.1021/acs.est.5b02086.Search in Google Scholar PubMed

Zhao, S.; Xue, J.; Kang, W. Ion selection of charge-modified large nanopores in a graphene sheet. J. Chem. Phys. 2013, 139(11), 114702; https://doi.org/10.1063/1.4821161.Search in Google Scholar PubMed

Zhao, X.; Hayner, C. M.; Kung, M. C.; Kung, H. H. Flexible holey graphene paper electrodes with enhanced rate capability for energy storage applications. ACS Nano 2011, 5(11), 8739–8749; https://doi.org/10.1021/nn202710s.Search in Google Scholar PubMed

Zhao, X.; Su, Y.; Liu, Y.; Li, Y.; Jiang, Z. Free-standing graphene oxide-palygorskite nanohybrid membrane for oil/water separation. ACS Appl. Mater. Interfaces 2016, 8(12), 8247–8256; https://doi.org/10.1021/acsami.5b12876.Search in Google Scholar PubMed

Zhao, Y.; Xie, Y.; Liu, Z.; Wang, X.; Chai, Y.; Yan, F. Two-dimensional material membranes: an emerging platform for controllable mass transport applications. Small 2014, 10(22), 4521–4542; https://doi.org/10.1002/smll.201401549.Search in Google Scholar PubMed

Zheng, Q.-B.; Shi, L.-F.; Yang, J.-H. Langmuir-blodgett assembly of ultra-large graphene oxide films for transparent electrodes. Trans. Nonferrous Metals Soc. 2012a, 22(10), 2504–2511; https://doi.org/10.1016/s1003-6326(11)61492-1.Search in Google Scholar

Zheng, Q.; Zhang, B.; Lin, X.; Shen, X.; Yousefi, N.; Huang, Z.-D.; Li, Z.; Kim, J.-K. Highly transparent and conducting ultralarge graphene oxide/single-walled carbon nanotube hybrid films produced by Langmuir-Blodgett assembly. J. Mater. Chem. 2012b, 22(48), 25072–25082; https://doi.org/10.1039/c2jm34870e.Search in Google Scholar

Zheng, S.; Tu, Q.; Urban, J. J.; Li, S.; Mi, B. Swelling of graphene oxide membranes in aqueous solution: characterization of interlayer spacing and insight into water transport mechanisms. ACS Nano 2017, 11(6), 6440–6450; https://doi.org/10.1021/acsnano.7b02999.Search in Google Scholar PubMed

Zhong, J.; Sun, W.; Wei, Q.; Qian, X.; Cheng, H.-M.; Ren, W. Efficient and scalable synthesis of highly aligned and compact two-dimensional nanosheet films with record performances. Nat. Commun. 2018, 9(1), 3484; https://doi.org/10.1038/s41467-018-05723-2.Search in Google Scholar PubMed PubMed Central

Zhou, D.; Cui, Y.; Xiao, P.-W.; Jiang, M.-Y.; Han, B.-H. A general and scalable synthesis approach to porous graphene. Nat. Commun. 2014, 5, 4716; https://doi.org/10.1038/ncomms5716.Search in Google Scholar PubMed

Zhou, F.; Tien, H. N.; Xu, W. L.; Chen, J.-T.; Liu, Q.; Hicks, E.; Fathizadeh, M.; Li, S.; Yu, M. Ultrathin graphene oxide-based hollow fiber membranes with brush-like CO2-philic agent for highly efficient CO2 capture. Nat. Commun. 2017, 8(1), 2107; https://doi.org/10.1038/s41467-017-02318-1.Search in Google Scholar PubMed PubMed Central

Received: 2022-01-01
Accepted: 2022-03-08
Published Online: 2022-03-30
Published in Print: 2023-03-28

© 2022 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 10.12.2025 from https://www.degruyterbrill.com/document/doi/10.1515/revic-2022-0001/html
Scroll to top button