Home Physical Sciences Quantitative phase analysis of anhydrous clinker Portland using Rietveld method
Article
Licensed
Unlicensed Requires Authentication

Quantitative phase analysis of anhydrous clinker Portland using Rietveld method

  • Dounia Tlamsamania EMAIL logo , Mbark Ait-Mouha , Siham Slassi , Youness Khaddam , Diana Londono Zuluaga and Khalid Yamni
Published/Copyright: May 13, 2022

Abstract

Modern cements are complex materials with well-defined compositions that reach to high and consistent results. Automated techniques such as Rietveld analysis lead to provide an understanding of the composition and polymorphism of cement phases that could lead to control of the clinkering conditions to optimize characteristics and consequently quality product. For the characterization of cements used in the construction sector, Rietveld method has significant benefits over other analytical techniques. The precise information about phase assemblage and polymorphism lets monitoring the hydration behavior of binder materials. The objective of this paper is to report the quantitative Rietveld phase analyzes for three industrial clinkers, to review the most recent quantitative X-ray powder diffraction studies on anhydrous cement and to discuss the influence of the different parameters elaborated in the Rietveld method.


Corresponding author: Dounia Tlamsamania, Materials, Molecular Engineering Environment Laboratory, Moulay Ismail University, Meknes, Morocco, E-mail:

  1. Author contribution: Diana contributed to the realization of the refinement. Youness contributed to the analysis of the test results and to the drafting of the manuscript. Siham helped revise the manuscript extensively. Mbark helped revise the manuscript. All authors have read and approved the final manuscript.

  2. Research funding: Not applicable.

  3. Conflict of interest statement: No competing interests exist in the submission of this manuscript, and the manuscript is approved by all authors for publication. The authors confirm that this manuscript has not been previously published and is not currently under consideration by any other journal. Additionally, we approved the contents of this paper and have agreed to the Journal of Reviews in Inorganic Chemistry’s submission policies.

References

Álvarez-Pinazo, G.; Cuesta, A.; García-Maté, M.; Santacruz, I.; Losilla, E. R.; De La Torre, A. G.; León-Reina, L.; Aranda, M. A. G. Rietveld quantitative phase analysis of Yeelimite-containing cements. Cement Concr. Res. 2012, 42, 960–971; https://doi.org/10.1016/j.cemconres.2012.03.018.Search in Google Scholar

Aranda, M. A. G.; De la Torre, A. G.; Leon-Reina, L. Rietveld quantitative phase analysis of OPC clinkers, cements and hydration products. Rev. Mineral. Geochem. 2012, 74, 169–209; https://doi.org/10.2138/rmg.2012.74.5.Search in Google Scholar

Aranda, M. A. G.; Cuesta, A.; De la Torre, A. G.; Santacruz, I.; León-Reina, L. 2. Diffraction and crystallography applied to hydrating cements. In Cementitious Materials; De Gruyter: Malaga, 2017. https://doi.org/10.1515/9783110473728-003.Search in Google Scholar

Bogue, R. H. Calculation of the compounds in Portland cements. Ind. Eng. Chem. 1929, 1, 192–197; https://doi.org/10.1201/9781351069397-11.Search in Google Scholar

Colville, A. A.; Geller, S. The crystal structure of brownmillerite, Ca2FeAlO5. Acta Crystallogr. Sect. B Struct. Crystallogr. Cryst. Chem. 1971, 27, 2311–2315; https://doi.org/10.1107/S056774087100579X.Search in Google Scholar

Courtial, M.; de Noirfontaine, M.-N.; Dunstetter, F.; Gasecki, G.; Signes-Frehel, M. Polymorphism of tricalcium silicate in Portland cement: a fast visual identification of structure and superstructure. Powder Diffr. 2003, 18, 1–20; https://doi.org/10.1154/1.1523079.Search in Google Scholar

De la Torre, A. G.; Aranda, M. A. G. Accuracy in Rietveld quantitative phase analysis of Portland cements. J. Appl. Crystallogr. 2003, 36, 1169–1176; https://doi.org/10.1107/S002188980301375X.Search in Google Scholar

De La Torre, A. G.; Bruque, S.; Campo, J.; Aranda, M. A. G. The superstructure of C3S from synchrotron and neutron powder diffraction and its role in quantitative phase analyses. Cement Concr. Res. 2002, 32, 1347–1356; https://doi.org/10.1016/S0008-8846(02)00796-2.Search in Google Scholar

De La Torre, G.; de los Ángeles, M. Estudio de cementos y materiales relacionados por el método de Rietveld; Universidad de Málaga: Malaga, Spain, 2003.Search in Google Scholar

De la Torre, Á. G.; De Vera, R. N.; Cuberos, A. J. M.; Aranda, M. A. G. Crystal structure of low magnesium-content alite: application to Rietveld quantitative phase analysis. Cement Concr. Res. 2008, 38, 1261–1269; https://doi.org/10.1016/j.cemconres.2008.06.005.Search in Google Scholar

De la Torre, Á. G.; Santacruz, I.; León-Reina, L.; Cuesta, A.; Aranda, M. A. G. 1. Diffraction and crystallography applied to anhydrous cements. In Cementitious Materials; De Gruyter: Malaga, 2017; pp. 3–29; https://doi.org/10.1515/9783110473728-002.Search in Google Scholar

De Noirfontaine, M. N.; Courtial, M.; De Noirfontaine, M.; Dunstetter, F.; Gasecki, G.; Signes-Frehel, M. Tricalcium silicate Ca3SiO5 superstructure analysis: a route towards the structure of the M1 polymorph. Z. Kristallogr. 2012, 227, 102–112; https://doi.org/10.1524/zkri.2011.1425.Search in Google Scholar

de Noirfontaine, M.-N. Étude Structurale Et Cristallographie Du Composé Majoritaire Du Ciment Anhydre : Le Silicate Tricalcique; École Polytechnique: France, 2000.Search in Google Scholar

Dollase, W. A. Correction of intensities for preferred orientation in powder diffractometry: application of the march model. J. Appl. Crystallogr. 1986, 19, 267–272; https://doi.org/10.1107/S0021889886089458.Search in Google Scholar

Füllmann, T.; Walenta, G.; Bier, T.; Espinosa, B.; Scrivener, K. Quantitative Rietveld phase analysis of calcium aluminate cements. World Cement 1999, 30, 91–96.Search in Google Scholar

Golovastikov, N. I.; Matveeva, R. G.; Belov, N. Crystal structure of the tricalcium silicate 3CaO.SiO2 = C3S. Soviet phy. Crystallogr. 1975, 4, 1–20.Search in Google Scholar

Gravereau, P. Introduction à la pratique de la diffraction des rayons x par les poudres; ICMCB-CNRS: France, 2012.Search in Google Scholar

Guirado, F.; Galí, S.; Chinchón, S. Quantitative Rietveld analysis of aluminous cement clinker phases. Cement Concr. Res. 2000, 30, 1023–1029; https://doi.org/10.1016/S0008-8846(00)00289-1.Search in Google Scholar

Hewat, A. W. Cubic-tetragonal-orthorhombic-rhombohedral ferroelectric transitions in perovskite potassium niobate: neutron powder profile refinement of the structures. J. Phys. C Solid State Phys. 1973, 6, 2559–2572; doi: https://doi.org/10.1088/0022-3719/6/16/010.Search in Google Scholar

Jeffery, J. W. The crystal structure of tricalcium silicate. Acta Crystallogr. 1952, 5, 26–35; https://doi.org/10.1107/S0365110X52000083.Search in Google Scholar

Jeffery, J. W.; Mondal, P. The crystal structure of triealeium aluminate , Ca3AL2O6. Acta Crystallogr. 1975, B31, 689–697.10.1107/S0567740875003639Search in Google Scholar

Khattak, C. P.; Cox, D. E. Profile analysis of X-ray powder diffractometer data: structural refinement of La0.75Sr0.25CrO3. J. Appl. Crystallogr. 1977, 10, 405–411; https://doi.org/10.1107/S0021889877013855.Search in Google Scholar

Kniess, C. T.; de Lima, J. C.; Prates, P. B. The quantification of crystalline phases in materials: applications of Rietveld method. In Handbook of Sintering – Methods and Products; Shatokha, D. V., Ed. InTech: Atibaia, SP, Brazil, 2012; pp. 293–316.Search in Google Scholar

Larson, A. C.; Von Dreele, R. B. General Structure Analysis System (GSAS); National Laboratory Report LAUR: Los Alamos, 2004.Search in Google Scholar

León-Reina, L.; De la Torre, Á. G.; Porras-Vázquez, J. M.; Cruz, M.; Ordonez, L. M.; Alcobé, X.; Gispert-Guirado, F.; Larrãaga-Varga, A.; Paul, M.; Fuellmann, T.; Schmidt, R.; Aranda, M. A. G. Round robin on Rietveld quantitative phase analysis of Portland cements. J. Appl. Crystallogr. 2009, 42, 906–916; https://doi.org/10.1107/S0021889809028374.Search in Google Scholar

Le Saoût, G.; Kocaba, V.; Scrivener, K. Application of the Rietveld method to the analysis of anhydrous cement. Cement Concr. Res. 2011, 41, 133–148; https://doi.org/10.1016/j.cemconres.2010.10.003.Search in Google Scholar

Madsen, I. C.; Scarlett, N. V. Y.; Cranswick, L. M. D.; Lwin, T. Outcomes of the International Union of Crystallography Commission on powder diffraction round robin on quantitative phase analysis: samples 1 a to 1 h. J. Appl. Crystallogr. 2001, 34, 409–426; https://doi.org/10.1107/S0021889801007476.Search in Google Scholar

Malmros, G.; Thomas, J. O. Least-squares structure refinement based on profile analysis of powder film intensity data measured on an automatic microdensitometer. J. Appl. Crystallogr. 1977, 10, 7–11; https://doi.org/10.1107/S0021889877012680.Search in Google Scholar

Mumme, W. G.; Hill, R. J.; Bushnell-Wye, G.; Segnit, E. R. Rietveld crystal structure refinements, crystal chemistry and calculated powder diffraction data for the polymorphs of dicalcium silicate and related phases. Neues Jahrbuch Mineral. Abhand. 1995, 169, 35–68.Search in Google Scholar

Nishi, F.; Takeuchi, Y. The rhombohedral structure of tricalcium silicate at 1200 °C. Z. Kristallogr. 1984, 168, 197–212; https://doi.org/10.1524/zkri.1984.168.1-4.197.Search in Google Scholar

Pajares, I.; De la Torre, Á. G.; Martínez-Ramírez, S.; Puertas, F.; Blanco-Varela, M.-T.; Aranda, M. A. G. Quantitative analysis of mineralized white Portland clinkers: the structure of fluorellestadite. Powder Diffr. 2002, 17, 281–286; https://doi.org/10.1154/1.1505045.Search in Google Scholar

Pawley, G. S. Unit-cell refinement from powder diffraction scans. J. Appl. Crystallogr. 1981, 14, 357–361; https://doi.org/10.1107/S0021889881009618.Search in Google Scholar

Peterson, V. K. Diffraction Investigations of Cement Clinker and Tricalcium Silicate using Rietveld Analysis; University of Technology: Sydney, 2003.Search in Google Scholar

Peterson, V. K.; Hunter, B. A.; Ray, A. Tricalcium silicate T1 and T2 polymorphic investigations: Rietveld refinement at various temperatures using synchrotron powder diffraction. J. Am. Ceram. Soc. 2004, 87, 1625–1634; https://doi.org/10.1111/j.1551-2916.2004.01625.x.Search in Google Scholar

Plötze, M. Quantitative phase analysis of Portland cement clinker with the Rietveld method. Appl. Mineral. 2000, 5, 879–882.Search in Google Scholar

Post, J. E.; Bish, D. L. Rietveld refinement of crystal structures using powder X-ray diffraction data. In Modern Powder Diffraction; De Gruyter: Berlin, Boston, 1989.10.1515/9781501509018Search in Google Scholar

Rietveld, H. M. A profile refinement method for nuclear and magnetic structures. J. Appl. Crystallogr. 1969, 2, 65–71; https://doi.org/10.1107/S0021889869006558.Search in Google Scholar

Saalfeld, H.; Depmeier, W. Silicon-free compounds with sodalite structure. Krist. Tech. 1972, 7, 229–233; https://doi.org/10.1002/crat.19720070125.Search in Google Scholar

Sasaki, S.; Fujino, K.; Takéuchi, Y. X-ray determination of electron-density distributions in oxides, MgO, MnO, CoO, and NiO, and atomic scattering factors of their constituent atoms. Proc. Jpn. Acad. 1979, 55, 43–48; https://doi.org/10.2183/pjab.55.43.Search in Google Scholar

Scarlett, N. V. Y.; Madsen, I. C.; Manias, C.; Retallack, D. On-line X-ray diffraction for quantitative phase analysis: application in the Portland cement industry. Powder Diffr. 2001, 16, 71–80; https://doi.org/10.1154/1.1359796.Search in Google Scholar

Scarlett, N. V. Y.; Madsen, C. I.; Cranswick, L. M. D.; Lwin, T.; Groleau, E.; Stephenson, G.; Aylmore, M.; Agron-Olshina, N. Outcomes of the International Union of Crystallography Commission on powder diffraction round robin on quantitative phase analysis: samples 2, 3, 4, synthetic bauxite, natural granodiorite and pharmaceuticals. J. Appl. Crystallogr. 2002, 35, 383–400; https://doi.org/10.1107/S0021889802008798.Search in Google Scholar

Stutzman, P. Guide for X-Ray Powder Diffraction Analysis of Portland Cement and Clinker. NIST International Report 5755, Gaithersburg, Maryland, 1996.Search in Google Scholar

Taylor, H. F. W. Modification of the Bogue calculation. Adv. Cement Res. 1989, 2, 73–77; https://doi.org/10.1680/adcr.1989.2.6.73.Search in Google Scholar

Taylor, H. F. W. Cement Chemistry, 2nd ed.; Thomas Telford Publishing: London, 1997.10.1680/cc.25929Search in Google Scholar

Taylor, J. C.; Aldridge, L. P. Full-profile Rietveld quantitative XRD analysis of Portland cement: standard XRD profiles for the major phase tricalcium silicates (O3S: 3CaO.SiO2). Powder Diffr. 1993, 8, 138–144; https://doi.org/10.1017/S0885715600018054.Search in Google Scholar

Thompson, P.; Cox, D. E.; Hastings, J. B. Rietveld refinement of Debye–Scherrer synchrotron X‐ray data from Al2O. J. Appl. Crystallogr. 1987, 20, 79–83; https://doi.org/10.1107/S0021889887087090.Search in Google Scholar

Von Dreele, R. B.; Jorgensen, J. D.; Windsor, C. G.; IUCr. Rietveld refinement with spallation neutron powder diffraction data. J. Appl. Crystallogr. 1982, 15, 581–589; https://doi.org/10.1107/S0021889882012722.Search in Google Scholar

Walenta, G.; Füllmann, T. Advances in quantitative XRD analysis for clinker, cements, and cementitious additions. Powder Diffr. 2004, 19, 40–44; https://doi.org/10.1154/1.1649328.Search in Google Scholar

Young, R. A. The Rietveld Method; Oxford: New York, 1995.Search in Google Scholar

Young, R. A.; Mackie, P. E.; von Dreele, R. B. Application of the pattern-fitting structure-refinement method of X-ray powder diffractometer patterns. J. Appl. Crystallogr. 1977, 10, 262–269; https://doi.org/10.1107/S0021889877013466.Search in Google Scholar

Zea-Garcia, J. D.; Santacruz, I.; Aranda, M. A. G.; De la Torre, A. G. Alite-belite-ye’elimite cements: effect of dopants on the clinker phase composition and properties. Cement Concr. Res. 2019, 115, 192–202; https://doi.org/10.1016/j.cemconres.2018.10.019.Search in Google Scholar

Received: 2022-02-16
Accepted: 2022-04-25
Published Online: 2022-05-13
Published in Print: 2023-03-28

© 2022 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 10.12.2025 from https://www.degruyterbrill.com/document/doi/10.1515/revic-2022-0005/html
Scroll to top button