Abstract
The attempts to produce neutron deficient radioisotopes of rare Earth elements by heavy ion activation are discussed in this review. The heavy ion induced reaction products have large atomic number difference with that of the target; therefore, radiochemical separation of no-carrier-added radio-lanthanides from the target matrix becomes easier. Heavy ion induced reactions also allow the production of rare Earth radionuclides from non-rare Earth target by tailor-made target-projectile combinations, and in those cases, radiochemical separations become even more easier. In general, the cross sections of heavy ion induced reactions are less than those of light charged particle induced reactions. However, some of the heavy ion induced reactions have comparable cross sections with those of light ion induced reactions. The range of heavy ions is also much smaller in the target matrix than that of lighter charged particles. These points hinder application of heavy ion induced reactions to produce radionuclides for nuclear medicine.
-
Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.
-
Research funding: None declared.
-
Conflict of interest statement: The authors declare no conflicts of interest regarding this article.
References
1. Stöcklin, G., Qaim, S. M., Rösch, F. The impact of radioactivity on medicine. Radiochim. Acta 1995, 70/71, 249–272.10.1524/ract.1995.7071.special-issue.249Search in Google Scholar
2. Qaim, S. M., Scholten, B., Neumaier, B. New developments in the production of theranostic pairs of radionuclides. J. Radioanal. Nucl. Chem. 2018, 318, 1493–1509; https://doi.org/10.1007/s10967-018-6238-x.Search in Google Scholar
3. Naskar, N., Lahiri, S. Theranostic terbium radioisotopes: challenges in production for clinical application. Front. Med. 2021, 08, 6750014; https://doi.org/10.3389/fmed.2021.675014.Search in Google Scholar PubMed PubMed Central
4. Ditrói, F., Takács, S., Haba, H., Komori, Y., Aikawa, M., Szücs, Z., Saito, M. Excitation function of the alpha particle induced nuclear reactions on enriched 116Cd, production of the theranostic isotope 117mSn. Nucl. Instrum. Methods Phys. Res. B 2016, 385, 1–8.10.1016/j.nimb.2016.08.016Search in Google Scholar
5. Qaim, S. M. Theranostic radionuclides: recent advances in production methodologies. J. Radioanal. Nucl. Chem. 2019, 322, 1257–1266; https://doi.org/10.1007/s10967-019-06797-y.Search in Google Scholar
6. Rösch, F., Herzog, H., Qaim, S. M. The beginning and development of the theranostic approach in nuclear medicine, as exemplified by the radionuclide pair 86Y and 90Y. Pharmaceuticals 2017, 10, 56.10.3390/ph10020056Search in Google Scholar PubMed PubMed Central
7. Qaim, S. M. Nuclear data for production and medical application of radionuclides: present status and future needs. Nucl. Med. Biol. 2017, 44, 31–49; https://doi.org/10.1016/j.nucmedbio.2016.08.016.Search in Google Scholar PubMed
8. Qaim, S. M. Therapeutic radionuclides and nuclear data. Radiochim. Acta 2001, 89, 297–302; https://doi.org/10.1524/ract.2001.89.4-5.297.Search in Google Scholar
9. Lahiri, S., Maiti, M. Recent developments in nuclear data measurements and chemical separation methods in accelerator production of astatine and technetium radionuclides. Radiochim. Acta 2012, 100, 85–94; https://doi.org/10.1524/ract.2011.1888.Search in Google Scholar
10. Stora, T. Isotopes for precision medicine. CERN Cour. 2018, 58, 29.Search in Google Scholar
11. Lahiri, S. Across the energy scale – from eV to GeV. J. Radioanal. Nucl. Chem. 2016, 307, 1571–1586; https://doi.org/10.1007/s10967-015-4298-8.Search in Google Scholar
12. NuDat 3.0. https://www.nndc.bnl.gov/nudat3/ (accessed Apr 01, 2022).Search in Google Scholar
13. Schneider, J. D. Overview of High-Power CW Proton Accelerators. In Proceedings of 7th European Particle Accelerator Conference (EPAC 2000), Vienna, Austria, 2000.Search in Google Scholar
14. Nayak, D., Lahiri, S. Application of radioisotopes in the field of nuclear medicine part I: lanthanide series elements. J. Radioanal. Nucl. Chem. 1999, 242, 423–432; https://doi.org/10.1007/bf02345573.Search in Google Scholar
15. Lahiri, S., Nayak, D., Das, N. R. Studies on Liquid Liquid Extraction of Neodymium and Promethium with HDEHP. Book of Abstracts, 34th Annual Convention of Chemists; University of Delhi: India, 1997.Search in Google Scholar
16. Lahiri, S., Nayak, D., Das, N. R. Studies of the Extraction Behavior of 169Yb from Proton Irradiated Thulium Target, Book of Abstracts, 16th Conference of Indian Council of Chemists; Mangalore University: India, 1997.Search in Google Scholar
17. Lahiri, S., Nayak, D., Nandy, M., Das, N. R. Separation of carrier free lutetium produced in proton activated ytterbium with HDEHP. Appl. Radiat. Isot. 1998, 49, 911–913; https://doi.org/10.1016/s0969-8043(97)10101-4.Search in Google Scholar
18. Steyn, G. F., Vermeulen, C., Szelecsenyi, F., Kovvacs, Z., Hohn, A., Van Der Meulen, N. P., Schibli, R., van der Walt, T. N. Cross-sections of proton-induced reactions on 152Gd, 155Gd and 159Tb with emphasis on the production of selected Tb radionuclides. Nucl. Instrum. Methods Phys. Res., Sect. B 2014, 319, 128–140; https://doi.org/10.1016/j.nimb.2013.11.013.Search in Google Scholar
19. TRACE Sciences International. https://www.tracesciences.com/gd.htm (accessed Apr 01, 2022).Search in Google Scholar
20. National Isotope Development Centre. https://www.isotopes.gov/products/Gadolinium (accessed Apr 01, 2022).Search in Google Scholar
21. Alexander, J. M., Simonoff, G. N. Excitation functions for 149gTb from reactions between complex nuclei. Phys. Rev. 1963, 130, 2383–2387; https://doi.org/10.1103/physrev.130.2383.Search in Google Scholar
22. Kossakowski, R., Jastrzebski, J., Rymuza, P., Skulski, W., Gizon, A., André, S., Genevey, J., Gizon, J., Barci, V. Heavy residues following 5-10 MeV/nucleon 12C and 14N induced reactions on Sm and Pr targets. Phys. Rev. C 1985, 32, 1612–1630; https://doi.org/10.1103/physrevc.32.1612.Search in Google Scholar PubMed
23. Singh, D., Linda, S. B., Giri, P. K., Mahato, A., Tripathi, R., Kumar, H., Tali, S. A., Parashari, S., Ali, A., Dubey, R., Ansari, M. A., Kumar, R., Muralithar, S., Singh, R. P. Measurement of excitation functions of evaporation residues in the 16O+124Sn reaction and investigation of the dependence of incomplete fusion dynamics on entrance channel parameters. Phys. Rev. C 2018, 97, 064610; https://doi.org/10.1103/physrevc.97.064610.Search in Google Scholar
24. Sharma, M. K., Sing, B. P., Gupta, S., Musthafa, M. M., Bhardwaj, H. D., Prasad, R. K., Sinha, A. Complete and incomplete fusion: measurement and analysis of excitation functions in 12C+128Te system at energies near and above the Coulomb barrier. J. Phys. Soc. Jpn. 2003, 72, 1917–1925; https://doi.org/10.1143/jpsj.72.1917.Search in Google Scholar
25. Stokstad, R. G., DiGregorio, D. E., Lesko, K. T., Harmon, B. A., Norman, E. B., Pouliot, J., Chan, Y. D. Observation of a constant average angular momentum for fusion at sub-barrier energies. Phys. Rev. Lett. 1989, 62, 399–402; https://doi.org/10.1103/physrevlett.62.399.Search in Google Scholar PubMed
26. DiGregorio, D. E., Lesko, K. T., Harmon, B. A., Norman, E. B., Pouliot, J., Sur, B., Chan, Y., Stokstad, R. G. Angular momentum in sub-barrier fusion: experimental study using the isomer ratio 137Cem/137Ceg. Phys. Rev. C 1990, 42, 2108–2124; https://doi.org/10.1103/physrevc.42.2108.Search in Google Scholar PubMed
27. Sharma, M. K., Singh, P. P., Singh, D. P., Yadav, A., Sharma, V. R., Bala, I., Kumar, R., Singh, B. P., Prasad, R. Systematic study of pre-equilibrium emission at low energies in C12-and O16-induced reactions. Phys. Rev. C 2015, 91, 014603; https://doi.org/10.1103/physrevc.91.014603.Search in Google Scholar
28. Singh, D. P., Sharma, V. R., Yadav, A., Singh, P. P., Sharma, M. K., Kumar, R., Singh, B. P., Prasad, R. Experimental study of incomplete fusion reactions in the O16+Te130 system below 6 MeV/nucleon. Phys. Rev. C 2014, 89, 024612; https://doi.org/10.1103/physrevc.89.024612.Search in Google Scholar
29. Unnati Sharma, M. K., Singh, B. P., Prasad, R., Gupta, S., Bhardwaj, H. D., Sinha, A. K. A study of excitation functions for some residues produced in the system 14N+128Te in the energy range≈ 64–90 MeV. Int. J. Mod. Phys. E 2005, 14, 775–786; https://doi.org/10.1142/s0218301305003545.Search in Google Scholar
30. Maiti, M. New measurement of cross sections of evaporation residues from the natPr+12C reaction: a comparative study on the production of 149Tb. Phys. Rev. C 2011, 84, 044615; https://doi.org/10.1103/physrevc.84.044615.Search in Google Scholar
31. Rath, P. K., Santra, S., Singh, N. L., Nayak, B. K., Mahata, K., Palit, R., Ramachandran, K., Pandit, S. K., Parihari, A., Pal, A., Appannababu, S., Sharma, S. K., Patel, D., Kailas, S. Complete fusion in 7Li+144,152Sm reactions. Phys. Rev. C 2013, 88, 044617; https://doi.org/10.1103/physrevc.88.044617.Search in Google Scholar
32. Beyer, G.-J., Čomor, J. J., Daković, M., Soloviev, D., Tamburella, C., Hagebø, E., Allan, B., Dmitriev, S. N., Zaitseva, N. G., Starodub, G. Y., Molokanova, L. G., Vranješ, S., Miederer, M. The ISOLDE Collaboration. Production routes of the alpha emitting 149Tb for medical application. Radiochim. Acta 2002, 90, 247–252; https://doi.org/10.1524/ract.2002.90.5_2002.247.Search in Google Scholar
33. Jungclaus, A., Binder, B., Dietrich, A., Härtlein, T., Bauer, H., Gund, Ch., Pansegrau, D., Schwalm, D., Egido, J. L., Sun, Y., Bazzacco, D., de Angelis, G., Farnea, E., Gadea, A., Lunardi, S., Napoli, D. R., Rossi-Alvarez, C., Ur, C., Hagemann, G. B. Backbending region study in Dy-160,162 using incomplete fusion reactions. Phys. Rev. C 2002, 66, 014312; https://doi.org/10.1103/physrevc.66.014312.Search in Google Scholar
34. Singh, P. P., Singh, B. P., Sharma, M. K., Singh, D. P., Prasad, R., Kumar, R., Golda, K. S. Influence of incomplete fusion on complete fusion: observation of a large incomplete fusion fraction at E≈ 5− 7 MeV/nucleon. Phys. Rev. C 2008, 77, 014607; https://doi.org/10.1103/physrevc.77.014607.Search in Google Scholar
35. Sharma, M. K., Singh, B. P., Kumar, R., Golda, K. S., Bhardwaj, H. D., Prasad, R. A study of the reactions occurring in 16O+159Tb system: measurement of excitation functions and recoil range distributions. Nucl. Phys. A 2006, 776, 83–104; https://doi.org/10.1016/j.nuclphysa.2006.06.171.Search in Google Scholar
36. Lahiri, S., Nayak, D., Das, S. K., Ramaswami, A., Manohor, S. B., Das, N. R. Separation of carrier free dysprosium and terbium isotopes from 12C6+ irradiated Nd2O3. Appl. Radiat. Isot. 1999, 51, 27–32; https://doi.org/10.1016/s0969-8043(98)00189-4.Search in Google Scholar
37. Lahiri, S., Nayak, D., Das, S. K., Ramaswami, A., Manohor, S. B., Das, N. R. Separation of carrier free 152,153Dy and 151-153Tb from 16O7+ irradiated CeO2 by liquid-liquid extraction. J. Radioanal. Nucl. Chem. 1999, 241, 201–206; https://doi.org/10.1007/bf02347313.Search in Google Scholar
38. Nayak, D., Lahiri, S., Ramaswami, A., Manohor, S. B., Das, N. R. Separation of carrier free 151,152Tb produced in 16O6+ irradiated lanthanum oxide matrix. Appl. Radiat. Isot. 1999, 51, 631–636; https://doi.org/10.1016/s0969-8043(99)00106-2.Search in Google Scholar
39. Gavron, A. Statistical model calculations in heavy ion reactions. Phys. Rev. C 1980, 21, 230–236; https://doi.org/10.1103/physrevc.21.230.Search in Google Scholar
40. Tarasov, O. B., Bazin, D. Development of the program LISE: application to fusion–evaporation. Nucl. Instrum. Methods B 2003, 204, 174–178; https://doi.org/10.1016/s0168-583x(02)01917-1.Search in Google Scholar
41. Maiti, M., Lahiri, S., Tomar, B. S. Investigation on the production and isolation of 149,150,151Tb from 12C irradiated natural praseodymium target. Radiochim. Acta 2011, 99, 527–533; https://doi.org/10.1524/ract.2011.1839.Search in Google Scholar
42. Maiti, M., Lahiri, S., Tomar, B. S. Separation of no-carrier-added 149Gd from 12C activated natural praseodymium matrix. J. Radioanal. Nucl. Chem. 2012, 291, 427–432; https://doi.org/10.1007/s10967-011-1195-7.Search in Google Scholar
43. Wilkinson, J. T., Barrett, K. E., Ferran, S. J., McGuinness, S. R., McIntosh, L. A., McCarthy, M., Yennello, S. J., Engle, J. W., Lapi, S. E., Peaslee, G. F. A heavy-ion production channel of 149Tb via 63Cu bombardment of 89Y. Appl. Radiat. Isot. 2021, 178, 109935; https://doi.org/10.1016/j.apradiso.2021.109935.Search in Google Scholar
44. Nayak, D., Lahiri, S., Ramaswami, A., Manohor, S. B. Separation of carrier-free 163,165Tm produced in 80 MeV 16O irradiated Eu2O3 target Matrix. Radiochim. Acta 1999, 87, 75–78; https://doi.org/10.1524/ract.1999.87.12.75.Search in Google Scholar
45. Qaim, S. M., Wu, C. H., Woelfle, R. He-3 particle emission in fast neutron induced reactions. Nucl. Phys. Sect. A 1983, 410, 421–428; https://doi.org/10.1016/0375-9474(83)90634-6.Search in Google Scholar
46. Nayak, D., Lahiri, S. Separation of carrier-free cerium radionuclides from different target matrix produced by heavy ion beams. Radiochim. Acta 2000, 88, 115–119; https://doi.org/10.1524/ract.2000.88.2.115.Search in Google Scholar
47. Lahiri, S., Nayak, D., Das, N. R. Production and separation of carrier-free 145,146Eu from a CsNO3 target using a 16O Beam. Appl. Radiat. Isot. 2000, 52, 1393–1397; https://doi.org/10.1016/s0969-8043(99)00166-9.Search in Google Scholar
48. Nayak, D., Lahiri, S., Ramaswami, A., Manohor, S. B., Das, N. R. Production and separation of carrier-free 146,147Eu from a 12C6+ irradiated La2O3 matrix. Appl. Radiat. Isot. 1999, 51, 261–268; https://doi.org/10.1016/s0969-8043(99)00048-2.Search in Google Scholar
49. Waheed, S., Zaidi, J. H., Ahmad, S., Saleem, M. Measurement of fission neutron spectrum averaged cross sections of some threshold reactions on dysprosium: small-scale production of no-carrier-added 153Gd in a nuclear reactor. Radiochim. Acta 2002, 90, 443–446; https://doi.org/10.1524/ract.2002.90.8_2002.443.Search in Google Scholar
50. Nayak, D., Lahiri, S., Das, S. K., Ramaswami, A., Manohor, S. B., Das, N. R. Separation of carrier-free gadolinium produced in an 80 MeV 12C6+ irradiated CeO2 target. Appl. Radiat. Isot. 1999, 51, 1–7; https://doi.org/10.1016/s0969-8043(98)00176-6.Search in Google Scholar
51. Nayak, D., Lahiri, S., Ramaswami, A., Manohor, S. B. Separation of carrier-free holmium and dysprosium produced in 70 MeV 11B5+ irradiated europium target by liquid-Liquid extraction with HDEHP. Indian J. Chem. 2000, 39A, 1061–1065.Search in Google Scholar
52. Homma, Y., Sugitani, Y., Matsui, Y., Matsuura, K., Kurata, K. Cyclotron production of 167Tm from natural erbium and natural holmium. Int. J. Appl. Radiat. Isot. 1989, 31, 505–508.10.1016/0020-708X(80)90314-2Search in Google Scholar
53. Tárkányi, F., Hermanne, A., Takács, S., Ditrói, F., Spahn, I., Kovalev, S. F., Ignatyuk, A. V., Qaim, S. M. Activation cross sections of the 169Tm(d,2n) reaction for production of the therapeutic radionuclide 169Yb. Appl. Radiat. Isot. 2007, 65, 663–668.10.1016/j.apradiso.2007.01.008Search in Google Scholar
54. Lahiri, S., Nayak, D., Ramaswami, A., Manohor, S. B. Separation of carrier-free ytterbium and thulium produced in 80 MeV 12C6+ irradiated gadolinium foil target by liquid-liquid extraction with HDEHP. Appl. Radiat. Isot. 2000, 52, 797–802; https://doi.org/10.1016/s0969-8043(99)00135-9.Search in Google Scholar
55. Lahiri, S., Nayak, D., Ramaswami, A., Manohor, S. B. Production and separation of carrier-free lutetium, ytterbium and thulium radionuclides from 75 MeV 12C6+ irradiated terbium foil target. J. Radioanal. Nucl. Chem. 2000, 243, 701–705.10.1023/A:1010674420648Search in Google Scholar
56. Gupta, S., Singh, B. P., Musthafa, M. M., Bhardwaj, H. D., Prasad, R. Complete and incomplete fusion of 12C with 165Ho below 7 MeV/nucleon: measurements and analysis of excitation functions. Phys. Rev. C 2000, 61, 064613; https://doi.org/10.1103/physrevc.61.064613.Search in Google Scholar
57. Lahiri, S., Banerjee, K., Nayak, D., Ramaswami, A., Das, N. R. Separation of carrier free hafnium and lutetium radionuclides produced in 16O activated terbium metal target. Appl. Radiat. Isot. 2000, 52, 1399–1405; https://doi.org/10.1016/s0969-8043(99)00167-0.Search in Google Scholar
58. Blann, M. Hybrid model for pre-equilibrium decay in nuclear reactions. Phys. Rev. Lett. 1971, 27, 337–340; https://doi.org/10.1103/physrevlett.27.337.Search in Google Scholar
59. Barashenkov, V. S., Konobeev, A. Y., Korovin, Y. A., Sosnin, V. N. CASCADE/INPE code system. At. Energy 1999, 87, 742–744; https://doi.org/10.1007/bf02673263.Search in Google Scholar
60. Sood, A., Singh, P. P., Sahoo, R. N., Kumar, P., Yadav, A., Sharma, V. R., Shuaib, M., Sharma, M. K., Singh, D. P., Gupta, U., Kumar, R., Aydin, S., Singh, B. P., Wollersheim, H. J., Prasad, R. Fission-like events in the 12C+169Tm system at low excitation energies. Phys. Rev. C 2017, 96, 014620; https://doi.org/10.1103/physrevc.96.014620.Search in Google Scholar
61. Nayak, D., Lahiri, S., Ramaswami, A., Manohor, S. B. Separation of no-carrier-added 147,149Gd and 147Eu produced in 70 MeV 11B irradiated praseodymium foil target. Radiochim. Acta 1999, 87, 93–96; https://doi.org/10.1524/ract.1999.87.34.93.Search in Google Scholar
62. Zychor, I., Rykaczewski, K., Kurcewicz, W., Ahrens, H., Folger, H., Kaffrell, K., Trautmann, N. Hafnium and lutetium isotopes produced in heavy-ion collisions of 7.6 MeV/u 40Ar, 8.5 MeV/u 84Kr and 8.5 MeV/u 136Xe on tungsten targets. Nucl. Phys. 1984, A414, 301–308; https://doi.org/10.1016/0375-9474(84)90646-8.Search in Google Scholar
63. Greenwood, N. N., Earnshaw, A. Chemistry of the Elements; Pergamon Press: Oxford, 1989.Search in Google Scholar
64. Das, N. R., Lahiri, S. Liquid ion exchangers and their uses in the separation of zirconium, niobium, molybdenum, hafnium, tantalum and tungsten. Solvent Extr. Ion Exch. 1991, 9, 337–381; https://doi.org/10.1080/07366299108918059.Search in Google Scholar
65. Maiti, M., Lahiri, S. Theoretical approach to explore the production routes of astatine radionuclides. Phys. Rev. C 2009, 79, 024611; https://doi.org/10.1103/physrevc.79.024611.Search in Google Scholar
66. Herman, M., Capote, R., Carlson, B. V., Obložinský, P., Sin, M., Trkov, A., Wienke, H., Zerkin, V. EMPIRE: nuclear reaction model code system for data evaluation. Nucl. Data Sheets 2007, 108, 2655–2715; https://doi.org/10.1016/j.nds.2007.11.003.Search in Google Scholar
67. Gastaldo, L., Blaum, K., Chrysalidis, K., Goodacre, T. D., Domula, A., Door, M., Dorrer, H., Düllmann, Ch. E., Eberhardt, K., Eliseev, S., Enss, C., Faessler, A., Filianin, P., Fleischmann, A., Fonnesu, D., Gamer, L., Haas, R., Hassel, C., Hengstler, D., Jochum, J., Johnston, K., Kebschull, U., Kempf, S., Kieck, T., Köster, U., Lahiri, S., Maiti, M., Mantegazzini, F., Marsh, B., Neroutsos, P., Novikov, Yu. N., Ranitzsch, P. C. O., Rothe, S., Rischka, A., Saenz, A., Sander, O., Schneider, F., Scholl, S., Schüssler, R. X., Schweiger, Ch., Simkovic, F., Stora, T., Szücs, Z., Türler, A., Veinhard, M., Weber, M., Wegner, M., Wendt, K., Zuber, K. The electron capture in 163Ho experiment – ECHo. Eur. Phys. J. Spec. Top. 2017, 226, 1623–1694; https://doi.org/10.1140/epjst/e2017-70071-y.Search in Google Scholar
68. Eliseev, S. A., Novikov, Yu. N., Blaum, K. Search for resonant enhancement of neutrinoless double-electron capture by high-precision Penning-trap mass spectrometry. J. Phys. G Nucl. Part. Phys. 2012, 39, 124003; https://doi.org/10.1088/0954-3899/39/12/124003.Search in Google Scholar
69. Pagliaroli, G., Rossi-Torres, F., Vissani, F. Neutrino mass bound in the standard scenario for supernova electronic antineutrino emission. Astropart. Phys. 2010, 33, 287–291; https://doi.org/10.1016/j.astropartphys.2010.02.007.Search in Google Scholar
70. Šimkovic, F., Faessler, A., Rodin, V., Vogel, P., Engel, J. Anatomy of the 0νββ nuclear matrix elements. Phys. Rev. C 2008, 77, 045503.10.1103/PhysRevC.77.045503Search in Google Scholar
© 2022 Walter de Gruyter GmbH, Berlin/Boston
Articles in the same Issue
- Frontmatter
- Editorial: Diamond Jubilee Issue
- Sixty years of Radiochimica Acta: a brief overview with emphasis on the last 10 years
- A. Chemistry of Radioelements
- Five decades of GSI superheavy element discoveries and chemical investigation
- Chemistry of the elements at the end of the actinide series using their low-energy ion-beams
- Sonochemistry of actinides: from ions to nanoparticles and beyond
- Theoretical insights into the reduction mechanism of neptunyl nitrate by hydrazine derivatives
- The speciation of protactinium since its discovery: a nightmare or a path of resilience
- On the volatility of protactinium in chlorinating and brominating gas media
- The aqueous chemistry of radium
- B. Energy Related Radiochemistry
- Selective actinide(III) separation using 2,6-bis[1-(propan-1-ol)-1,2,3-triazol-4-yl]pyridine (PyTri-Diol) in the innovative-SANEX process: laboratory scale counter current centrifugal contactor demonstration
- Fate of Neptunium in nuclear fuel cycle streams: state-of-the art on separation strategies
- Uranium adsorption – a review of progress from qualitative understanding to advanced model development
- Targeted synthesis of carbon-supported titanate nanofibers as host structure for nuclear waste immobilization
- Progress of energy-related radiochemistry and radionuclide production in the Republic of Korea
- C. Nuclear Data
- How accurate are half-life data of long-lived radionuclides?
- Status of the decay data for medical radionuclides: existing and potential diagnostic γ emitters, diagnostic β+ emitters and therapeutic radioisotopes
- An overview of nuclear data standardisation work for accelerator-based production of medical radionuclides in Pakistan
- An overview of activation cross-section measurements of some neutron and charged-particle induced reactions in Bangladesh
- Nuclear reaction data for medical and industrial applications: recent contributions by Egyptian cyclotron group
- Nuclear data for light charged particle induced production of emerging medical radionuclides
- D. Radionuclides and Radiopharmaceuticals
- The role of chemistry in accelerator-based production and separation of radionuclides as basis for radiolabelled compounds for medical applications
- Production of neutron deficient rare earth radionuclides by heavy ion activation
- Evaluation of 186WS2 target material for production of high specific activity 186Re via proton irradiation: separation, radiolabeling and recovery/recycling
- Special radionuclide production activities – recent developments at QST and throughout Japan
- China’s radiopharmaceuticals on expressway: 2014–2021
- E. Environmental Radioactivity
- A summary of environmental radioactivity research studies by members of the Japan Society of Nuclear and Radiochemical Sciences
Articles in the same Issue
- Frontmatter
- Editorial: Diamond Jubilee Issue
- Sixty years of Radiochimica Acta: a brief overview with emphasis on the last 10 years
- A. Chemistry of Radioelements
- Five decades of GSI superheavy element discoveries and chemical investigation
- Chemistry of the elements at the end of the actinide series using their low-energy ion-beams
- Sonochemistry of actinides: from ions to nanoparticles and beyond
- Theoretical insights into the reduction mechanism of neptunyl nitrate by hydrazine derivatives
- The speciation of protactinium since its discovery: a nightmare or a path of resilience
- On the volatility of protactinium in chlorinating and brominating gas media
- The aqueous chemistry of radium
- B. Energy Related Radiochemistry
- Selective actinide(III) separation using 2,6-bis[1-(propan-1-ol)-1,2,3-triazol-4-yl]pyridine (PyTri-Diol) in the innovative-SANEX process: laboratory scale counter current centrifugal contactor demonstration
- Fate of Neptunium in nuclear fuel cycle streams: state-of-the art on separation strategies
- Uranium adsorption – a review of progress from qualitative understanding to advanced model development
- Targeted synthesis of carbon-supported titanate nanofibers as host structure for nuclear waste immobilization
- Progress of energy-related radiochemistry and radionuclide production in the Republic of Korea
- C. Nuclear Data
- How accurate are half-life data of long-lived radionuclides?
- Status of the decay data for medical radionuclides: existing and potential diagnostic γ emitters, diagnostic β+ emitters and therapeutic radioisotopes
- An overview of nuclear data standardisation work for accelerator-based production of medical radionuclides in Pakistan
- An overview of activation cross-section measurements of some neutron and charged-particle induced reactions in Bangladesh
- Nuclear reaction data for medical and industrial applications: recent contributions by Egyptian cyclotron group
- Nuclear data for light charged particle induced production of emerging medical radionuclides
- D. Radionuclides and Radiopharmaceuticals
- The role of chemistry in accelerator-based production and separation of radionuclides as basis for radiolabelled compounds for medical applications
- Production of neutron deficient rare earth radionuclides by heavy ion activation
- Evaluation of 186WS2 target material for production of high specific activity 186Re via proton irradiation: separation, radiolabeling and recovery/recycling
- Special radionuclide production activities – recent developments at QST and throughout Japan
- China’s radiopharmaceuticals on expressway: 2014–2021
- E. Environmental Radioactivity
- A summary of environmental radioactivity research studies by members of the Japan Society of Nuclear and Radiochemical Sciences