Home The role of chemistry in accelerator-based production and separation of radionuclides as basis for radiolabelled compounds for medical applications
Article
Licensed
Unlicensed Requires Authentication

The role of chemistry in accelerator-based production and separation of radionuclides as basis for radiolabelled compounds for medical applications

  • Syed M. Qaim , Ingo Spahn EMAIL logo , Bernhard Scholten , Stefan Spellerberg and Bernd Neumaier
Published/Copyright: May 6, 2022

Abstract

Radiochemical separations used in large scale routine production of diagnostic and therapeutic radionuclides at a particle accelerator for patient care are briefly outlined. The role of chemistry at various stages of development of a production route of a novel radionuclide, namely nuclear data measurement, high-current targetry, chemical processing and quality control of the product, is discussed in detail. Special attention is paid to production of non-standard positron emitters (e.g. 44gSc, 64Cu, 68Ga, etc.) at a cyclotron and novel therapeutic radionuclides (e.g. 67Cu, 225Ac, etc.) at an accelerator. Some typical examples of radiochemical methods involved are presented.


Corresponding author: Ingo Spahn, Institut für Neurowissenschaften und Medizin: INM-5 (Nuklearchemie), Forschungszentrum Jülich GmbH, D-52425 Jülich, Germany, E-mail:

  1. Author contribution: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: None declared.

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

1. Stöcklin, G., Qaim, S. M., Rösch, F. The impact of radioactivity on medicine. Radiochim. Acta 1995, 70/71, 249–272, https://doi.org/10.1524/ract.1995.7071.s1.249.Search in Google Scholar

2. Qaim, S. M. Medical Radionuclide Production – Science and Technology; De Gruyter: Berlin/Boston, 2019.10.1515/9783110604375Search in Google Scholar

3. Qaim, S. M., Scholten, B., Spahn, I., Neumaier, B. Positron-emitting radionuclides for applications, with special emphasis on their production methodologies for medical use. Radiochim. Acta 2019, 107, 1011–1026, https://doi.org/10.1515/ract-2019-3154.Search in Google Scholar

4. Vertes, A., Nagy, S., Klencsár, Z., Lovas, R. G., Rösch, F. (eds.) Handbook of Nuclear Chemistry; Springer: Heidelberg, Germany, Vol. 4, 2011. see contribution by Mirzadeh, S., Mausner, L. F., Garland, M. A. on “Reactor produced medical radionuclides”, page 1857; by Qaim, S. M. on “Cyclotron production of medical radionuclides”, page 1903; and by Rösch, F., Knapp, F. F. on “Radionuclide generators”, page 1935.10.1007/978-1-4419-0720-2Search in Google Scholar

5. Qaim, S. M., Hussain, M., Spahn, I., Neumaier, B. Continuing nuclear data research for production of accelerator-based radionuclides for medical use: a mini-review. Front. Physics. 2021, 9, 639290; https://doi.org/10.3389/fphy.2021.639290.Search in Google Scholar

6. Qaim, S. M., Clark, J. C., Crouzel, C., Guillaume, M., Helmeke, H. J., Nebeling, B., Pike, V., Stöcklin, G. PET radionuclide production. In Radiopharmaceuticals for Positron Emission Tomography-Methodological Aspects; Stöcklin, G., Pike, V.W., Eds. Kluwer: Dordrecht, 1993, pp. 1–43.10.1007/978-94-015-8204-9_1Search in Google Scholar

7. Neumaier, B., Spahn, I., Qaim, S. M. Möglichkeiten und Grenzen der Nutzung kleiner Zyklotrone bei der Produktion medizinisch relevanter Radionuklide. Der Nuklearmediziner 2021, 44, 120–126; https://doi.org/10.1055/a-1380-7815.Search in Google Scholar

8. Meinken, G. E., Kurczak, S., Mausner, L. F., Kolsky, K. L., Srivastava, S. C. Production of high specific activity 68Ge at Brookhaven national laboratory. J. Radioanal. Nucl. Chem. 2005, 263, 553–557; https://doi.org/10.1007/s10967-005-0091-4.Search in Google Scholar

9. Shehata, M. M., Scholten, B., Spahn, I., Qaim, S. M., Coenen, H. H. Radiochemical studies relevant to the separation of 68Ga and 68Ge. J. Radioanal. Nucl. Chem. 2011, 288, 887–893, https://doi.org/10.1007/s10967-011-1023-0.Search in Google Scholar

10. Rösch, F., Riss, P. J. The renaissance of the 68Ge/68Ga radionuclide generator initiates new developments in Ga-68 radiopharmaceutical chemistry. Curr. Top. Med. Chem. 2010, 10, 1633–1668.10.2174/156802610793176738Search in Google Scholar PubMed

11. Van der Meulen, N. P., van der Walt, T. N., Steyn, G. F., Raubenheimer, H. G. The production of 82Sr using larger format RbCl targets. Appl. Radiat. Isot. 2013, 72, 96–99, https://doi.org/10.1016/j.apradiso.2012.09.017.Search in Google Scholar

12. Zhuikov, B., Ermolaev, S. Adsorption from liquid metals: an approach for recovery of radionuclides from irradiated targets. Radiochim. Acta 2021, 109, 99–107, https://doi.org/10.1515/ract-2020-0053.Search in Google Scholar

13. Hussain, M., Sudar, S., Aslam, M. N., Shah, H. A., Ahmad, R., Malik, A. A., Qaim, S. M. A comprehensive evaluation of charged-particle data for production of the therapeutic radionuclide 103Pd. Appl. Radiat. Isot. 2009, 67, 1842–1854, https://doi.org/10.1016/j.apradiso.2009.06.010.Search in Google Scholar

14. Ohya, T., Nagatsu, K., Minegishi, K., Zhang, M-R. Separation of 103Pd from a Rh target using an alloying pretreatment with bismuth. Radiochim. Acta 2022, 110, 251–258, https://doi.org/10.1515/ract-2021-1117.Search in Google Scholar

15. Lahiri, S., Maiti, M. Recent developments in nuclear data measurements and chemical separation methods in accelerator production of astatine and technetium radionuclides. Radiochim. Acta 2012, 100, 85–94, https://doi.org/10.1524/ract.2011.1888.Search in Google Scholar

16. Henriksen, G., Messelt, S., Olsen, E., Larsen, R. H. Optimisation of cyclotron production parameters for the 209Bi(α,2n)211At reaction related to biomedical use of 211At. Appl. Radiat. Isot. 2001, 54, 839–844, https://doi.org/10.1016/s0969-8043(00)00346-8.Search in Google Scholar

17. Aneheim, E., Albertsson, P., Bäck, T., Jensen, H., Palm, S., Lindgren, S. Automated astatination of biomolecules – a stepping stone towards multicenter clinical trials. Sci. Rep. 2015, 5, 12025, https://doi.org/10.1038/srep12025.Search in Google Scholar PubMed PubMed Central

18. O´Hara, M. J., Krzysko, A. J., Hamlin, D. K., Li, Y., Dorman, E. F., Wilbur, D. S. Development of an autonomous solvent extraction system to isolate astatine-211 from dissolved cyclotron bombarded bismuth targets. Sci. Rep. 2019, 9, 20318, https://doi.org/10.1038/s41598-019-56272-7.Search in Google Scholar PubMed PubMed Central

19. Feng, Y., Zalutsky, M. R. Production, purification and availability of 211At: near term steps towards global access. Nucl. Med. Biol. 2021, 100/101, 12–23, https://doi.org/10.1016/j.nucmedbio.2021.05.007.Search in Google Scholar PubMed PubMed Central

20. Rösch, F., Qaim, S. M., Stöcklin, G. Nuclear data relevant to the production of the positron-emitting radioisotope 86Y via the 86Sr(p, n)- and natRb(3He,xn)-processes. Radiochim. Acta 1993, 61, 1–8, https://doi.org/10.1524/ract.1993.61.1.1.Search in Google Scholar

21. Hassan, H. E., Qaim, S. M., Shubin, Y. N., Azzam, A., Morsy, M., Coenen, H. H. Experimental studies and nuclear model calculations on proton induced reactions on natSe, 76Se and 77Se with particular reference to the production of the medically interesting radionuclides 76Br and 77Br. Appl. Radiat. 2004, 60, 899–909, https://doi.org/10.1016/j.apradiso.2004.02.001.Search in Google Scholar

22. Uddin, M. S., Scholten, B., Basunia, M. S., Sudár, S., Spellerberg, S., Voyles, A. S., Morell, J. T., Zaneb, H., Rios, J. A., Spahn, I., Bernstein, L. A., Neumaier, B., Qaim, S. M. Accurate determination of production data of the non-standard positron emitter 86Y via the 86Sr(p,n)-reaction. Radiochim. Acta 2020, 108, 747–756, https://doi.org/10.1515/ract-2020-0021.Search in Google Scholar

23. Mushtaq, A., Qaim, S. M. Excitation functions of α- and 3He-particle induced nuclear reactions on natural germanium: evaluation of production routes for 73Se. Radiochim. Acta 1990, 50, 27–31, https://doi.org/10.1524/ract.1990.50.12.27.Search in Google Scholar

24. Piel, H., Qaim, S. M., Stöcklin, G. Excitation functions of (p,xn)-reactions on natNi and highly enriched 62Ni: possibility of production of medically important radioisotope 62Cu at a small cyclotron. Radiochim. Acta 1992, 57, 1–5, https://doi.org/10.1524/ract.1992.57.1.1.Search in Google Scholar

25. Klein, A. T. J., Rösch, F., Qaim, S. M. Investigation of 50Cr(d, n)51Mn and natCr(p, x)51Mn processes with respect to the production of the positron-emitter 51Mn. Radiochim. Acta 2000, 88, 253–264, https://doi.org/10.1524/ract.2000.88.5.253.Search in Google Scholar

26. Zaman, M. R., Qaim, S. M. Excitation functions of (d, n) and (d,α) reactions on 54Fe: relevance to the production of high-purity 55Co at a small cyclotron. Radiochim. Acta 1996, 75, 59–63, https://doi.org/10.1524/ract.1996.75.2.59.Search in Google Scholar

27. Reimer, P., Qaim, S. M. Excitation functions of proton induced reactions on highly enriched 58Ni with special relevance to the production of 55Co and 57Co. Radiochim. Acta 1998, 80, 113–120, https://doi.org/10.1524/ract.1998.80.3.113.Search in Google Scholar

28. Szelecsényi, F., Blessing, G., Qaim, S. M. Excitation functions of proton induced nuclear reactions on enriched 61Ni and 64Ni: possibility of production of no-carrier-added 61Cu and 64Cu at a small cyclotron. Appl. Radiat. Isot. 1993, 44, 575–580, https://doi.org/10.1016/0969-8043(93)90172-7.Search in Google Scholar

29. Stoll, T., Kastleiner, S., Shubin, Y. N., Coenen, H. H., Qaim, S. M. Excitation functions of proton induced reactions on 68Zn from threshold up to 71 MeV, with specific reference to the production of 67Cu. Radiochim. Acta 2002, 90, 309–313, https://doi.org/10.1524/ract.2002.90.6.309.Search in Google Scholar

30. Kovács, Z., Blessing, G., Qaim, S. M., Stöcklin, G. Production of 75Br via the 76Se(p,2n)75Br reaction at a compact cyclotron. Int. J. Appl. Radiat. Isot. 1985, 36, 635–642, https://doi.org/10.1016/0020-708x(85)90004-3.Search in Google Scholar

31. Hohn, A., Coenen, H. H., Qaim, S. M. Nuclear data relevant to the production of 120gI via the 120Te(p, n)-process at a small-sized cyclotron. Appl. Radiat. Isot. 1998, 49, 1493–1496, https://doi.org/10.1016/s0969-8043(98)00034-7.Search in Google Scholar

32. Hohn, A., Scholten, B., Coenen, H. H., Qaim, S. M. Excitation functions of (p,xn)-reactions on highly enriched 122Te: relevance to the production of 120gI. Appl. Radiat. Isot. 1998, 49, 93–98, https://doi.org/10.1016/s0969-8043(97)00217-0.Search in Google Scholar

33. Scholten, B., Qaim, S. M., Stöcklin, G. Excitation functions of proton induced nuclear reactions on natural tellurium and enriched 123Te: production of 123I via the 123Te(p, n)123I process at a low-energy cyclotron. Appl. Radiat. Isot. 1989, 40, 127–132, https://doi.org/10.1016/0883-2889(89)90187-1.Search in Google Scholar

34. Scholten, B., Kovács, Z., Tárkányi, F., Qaim, S. M. Excitation functions of 124Te(p,xn)124,123I reactions from 6 to 31 MeV with special reference to the production of 124I at a small cyclotron. Appl. Radiat. Isot. 1995, 46, 255–259, https://doi.org/10.1016/0969-8043(94)00145-p.Search in Google Scholar

35. Hohn, A., Nortier, F. M., Scholten, B., van der Walt, T. N., Coenen, H. H., Qaim, S. M. Excitation functions of 125Te(p,xn)-reactions from their respective threshold up to 100 MeV with special reference to the production of 124I. Appl. Radiat. Isot. 2001, 55, 149–156, https://doi.org/10.1016/s0969-8043(00)00388-2.Search in Google Scholar

36. Uddin, M. S., Scholten, B., Hermanne, A., Sudár, S., Coenen, H. H., Qaim, S. M. Radiochemical determination of cross sections of alpha-particle induced reactions on 192Os for the production of the therapeutic radionuclide 193mPt. Appl. Radiat. Isot. 2010, 68, 2001–2006, https://doi.org/10.1016/j.apradiso.2010.05.002.Search in Google Scholar PubMed

37. Kovács, Z., Szelecsényi, F., Brezovcsik, K. Preparation of thin gadolinium samples via electrodeposition for excitation function studies. J. Radioanal. Nucl. Chem. 2016, 307, 1861, https://doi.org/10.1007/s10967-015-4399-4.Search in Google Scholar

38. Hilgers, K., Shubin, Y. N., Coenen, H. H., Qaim, S. M. Experimental measurements and nuclear model calculations on the excitation functions of natCe(3He,xn) and 141Pr(p,xn) reactions with special reference to production of the therapeutic radionuclide 140Nd. Radiochim. Acta 2005, 93, 553–560, https://doi.org/10.1524/ract.2005.93.9-10.553.Search in Google Scholar

39. Steyn, G. F., Vermeulen, C., Szelecsényi, F., Kovács, Z., Hohn, A., van der Meulen, N. P., Schibli, R., van der Walt, T. N. Cross sections of proton-induced reactions on 152Gd, 155Gd and 159Tb with emphasis on the production of selected Tb radionuclides. Nucl. Instrum. Methods B 2014, 319, 128–140, https://doi.org/10.1016/j.nimb.2013.11.013.Search in Google Scholar

40. Pupillo, G., Mou, L., Martini, P., Pasquali, M., Boschi, A., Cicoria, G., Duatti, A., Haddad, F., Esposito, J. Production of 67Cu by enriched 70Zn target: first measurements of formation cross sections of 67Cu, 64Cu, 67Ga, 66Ga, 69mZn and 65Zn in interactions of 70Zn with protons above 45 MeV. Radiochim. Acta 2020, 108, 593–602, https://doi.org/10.1515/ract-2019-3199.Search in Google Scholar

41. Tárkányi, F., Qaim, S. M., Stöcklin, G. Excitation functions of 3He-particle induced nuclear reactions on enriched 82Kr and 83Kr. Radiochim. Acta 1988, 43, 185–189, https://doi.org/10.1524/ract.1988.43.4.185.Search in Google Scholar

42. Tárkányi, F., Kovács, Z., Qaim, S. M., Stöcklin, G. Production of 38K via the 38Ar(p, n)-process at a small cyclotron. Appl. Radiat. Isot. 1992, 43, 503–507, https://doi.org/10.1016/0883-2889(92)90132-x.Search in Google Scholar

43. Tárkányi, F., Kovács, Z., Qaim, S. M. Excitation functions of proton-induced nuclear reactions on highly enriched 78Kr: relevance to the production of 75Br and 78Br at a small cyclotron. Appl. Radiat. Isot. 1993, 44, 1105–1111, https://doi.org/10.1016/0969-8043(93)90114-p.Search in Google Scholar

44. Apostolidis, C., Molinet, R., McGinley, J., Abbas, K., Möllenbeck, J., Morgenstern, A. Cyclotron production of 225Ac for targeted therapy. Appl. Radiat. Isot. 2005, 62, 383, https://doi.org/10.1016/j.apradiso.2004.06.013.Search in Google Scholar PubMed

45. Ermolaev, S. V., Zhuikov, B. L., Kokhanyuk, V. M., Matushko, V. L., Kalmykov, S. N., Aliev, R. A., Tenanaev, I. G., Myasoedov, B. F. Production of actinium, thorium and radium isotopes from natural thorium irradiated with protons up to 141 MeV. Radiochim. Acta 2012, 100, 223–229, https://doi.org/10.1524/ract.2012.1909.Search in Google Scholar

46. Weidner, J. W., Mashnik, S. G., John, K. D., Hemez, F., Ballard, B. D., Bach, H., Birnbaum, E. R., Bitteker, L. J., Couture, A., Dry, D., Fassbender, M. E., Gulley, M. S., Jackman, K. R., Ullmann, J. L., Wolfsberg, L. E., Nortier, F. M. Proton-induced cross sections relevant to production of 225Ac and 223Ra in natural thorium targets below 200 MeV. Appl. Radiat. Isot. 2012, 70, 2602–2607, https://doi.org/10.1016/j.apradiso.2012.07.006.Search in Google Scholar PubMed

47. Qaim, S. M. Development of novel positron emitters for medical applications: nuclear and radiochemical aspects. Radiochim. Acta 2011, 99, 611–625, https://doi.org/10.1524/ract.2011.1870.Search in Google Scholar

48. Qaim, S. M. Nuclear data for medical radionuclides. J. Radioanal. Nucl. Chem. 2015, 305, 233–245, https://doi.org/10.1007/s10967-014-3923-2.Search in Google Scholar

49. Qaim, S. M. Nuclear data for production and medical application of radionuclides: present status and future needs. Nucl. Med. Biol. 2017, 44, 31–49, https://doi.org/10.1016/j.nucmedbio.2016.08.016.Search in Google Scholar PubMed

50. Kuhn, S., Spahn, I., Scholten, B., Coenen, H. H. Positron and γ-ray intensities in the decay of 45Ti. Radiochim. Acta 2015, 103, 403–409, https://doi.org/10.1515/ract-2014-0006.Search in Google Scholar

51. Uddin, M. S., Chakraborty, A. K., Spellerberg, S., Shariff, M. A., Das, S., Rashid, M. A., Spahn, I., Qaim, S. M. Experimental determination of proton induced reaction cross sections on natNi near threshold energy. Radiochim. Acta 2016, 104, 305–314, https://doi.org/10.1515/ract-2015-2527.Search in Google Scholar

52. Adam-Rebeles, R., Van Den Winkel, P., Hermanne, A., Tárkányi, F. New measurement and evaluation of the excitation function of 64Ni(p, n) reaction for the production of 64Cu. Nucl. Instrum. Methods B 2009, 267, 457–461, https://doi.org/10.1016/j.nimb.2008.11.038.Search in Google Scholar

53. Avila-Rodriguez, M. A., Nye, J. A., Nickles, R. J. Simultaneous production of high specific activity 64Cu and 61Co with 11.4 MeV protons on enriched 64Ni nuclei. Appl. Radiat. Isot. 2015, 65, 1115–1120.10.1016/j.apradiso.2007.05.012Search in Google Scholar

54. Sevior, M. E., Mitchell, L. W., Anderson, M. R., Tingwell, C. W. Absolute cross sections of proton induced reactions on Cu-65, Ni-64, Cu-63. Aust. J. Phys. 1983, 36, 463–471, https://doi.org/10.1071/ph830463.Search in Google Scholar

55. Blaser, J. P., Boehm, F., Marmier, P., Scherrer, P. Anregungsfunktionen und Wirkungsquerschnitte der (p, n)-Reaktion (II). Helv. Phys. Acta 1951, 24, 441–464.Search in Google Scholar

56. Tanaka, S., Furukawa, M., Chiba, M. Nuclear reactions of nickel with protons up to 56 MeV. J. Inorg. Nucl. Chem. 1972, 34, 2419–2426, https://doi.org/10.1016/0022-1902(72)80187-8.Search in Google Scholar

57. Levkovskii, V. N. Activation Cross Sections of Nuclides of Average Masses (A=40–100) by Protons and Alpha-Particles with Average Energies (E=10–50 MeV); Inter-Vesi: Moscow, 1991.Search in Google Scholar

58. Aslam, M. N., Sudár, S., Hussain, M., Malik, A. A., Shah, H. A., Qaim, S. M. Charged particle induced reaction cross section data for production of the emerging medically important positron emitter 64Cu: a comprehensive evaluation. Radiochim. Acta 2009, 97, 669–686, https://doi.org/10.1524/ract.2009.1670.Search in Google Scholar

59. DeGraffenreid, A. J., Medvedev, D. G., Phelps, T. E., Gott, M. D., Smith, S. V., Jurisson, S. S., Cutler, C. Cross-section measurements and production of 72Se with medium to high energy protons using arsenic containing targets. Radiochim. Acta 2019, 107, 279–287, https://doi.org/10.1515/ract-2018-2931.Search in Google Scholar

60. Hilgers, K., Coenen, H. H., Qaim, S. M. Production of the therapeutic radionuclides 193mPt and 195mPt with high specific activity via α-particle induced reactions on 192Os. Appl. Radiat. Isot. 2008, 66, 545–551, https://doi.org/10.1016/j.apradiso.2007.10.009.Search in Google Scholar

61. Qaim, S. M. Target development for the medical radioisotope production. Nucl. Instrum. MethodsA 1989, 282, 289–295, https://doi.org/10.1016/0168-9002(89)90155-1.Search in Google Scholar

62. Nishinaka, I., Washiyama, K., Hashimoto, K. Adsorption temperature of volatile astatine species formed via dry distillation in a glass tube. J. Radioanal. Nucl. Chem. 2021, 329, 1459–1465, https://doi.org/10.1007/s10967-021-07879-6.Search in Google Scholar

63. Blessing, G., Tárkányi, F., Qaim, S. M. Production of 82mRb via the 82Kr(p,n)-process on highly enriched 82Kr: a remotely controlled compact system for irradiation, safe handling and recovery of the target gas and isolation of the radioactive product. Appl. Radiat. Isot. 1997, 48, 37–43, https://doi.org/10.1016/s0969-8043(96)00121-2.Search in Google Scholar

64. Hoehr, C., Oehlke, E., Benard, F., Lee, C. J., Hou, X., Badesso, B., Ferguson, S., Miao, Q., Yang, H., Buckley, K., Hanemaayer, V., Zeisler, S., Ruth, T., Celler, A., Schaffer, P. 44gSc production using water target on a 13 MeV cyclotron. Nucl. Med. Biol. 2014, 41, 401–406, https://doi.org/10.1016/j.nucmedbio.2013.12.016.Search in Google Scholar

65. Alves, F., Alves, V. H. P., Do Carmo, S. J. C., Neves, A. B. C., Silva, M., Abrunhosa, A. J. Production of copper-64 and gallium-68 with a medical cyclotron using liquid targets. Mod. Phys. Lett. A 2017, 32, 1740013, https://doi.org/10.1142/s0217732317400132.Search in Google Scholar

66. Pandey, M. K., Byrne, J. F., Jiang, H., Packard, A. B., DeGrado, T. R. Cyclotron production of 68Ga via the 68Zn(p, n)68Ga reaction in aqueous solution. Am. J. Nucl. Med. Mol. Imag. 2014, 4, 303–310.Search in Google Scholar

67. Pandey, M. K., Bansal, A., Engelbrecht, H., Byrne, J. F., Packard, A. B., DeGrado, T. R. Improved production and processing of 89Zr using a solution target. Nucl. Med. Biol. 2016, 43, 97–100, https://doi.org/10.1016/j.nucmedbio.2015.09.007.Search in Google Scholar

68. Do Carmo, S. J. C., Scott, P. J. H., Alves, F. Production of radiometals in liquid targets. EJNMMI Radiopharm. Chem. 2020, 5, 2, https://doi.org/10.1186/s41181-019-0088-x.Search in Google Scholar

69. Pandey, M. K., DeGrado, T. R. Cyclotron production of PET radiometals in liquid targets: aspects and prospects. Curr. Rad. 2020, 13, 1–15.10.2174/1874471013999200820165734Search in Google Scholar

70. Qaim, S. M. Theranostic radionuclides: recent advances in production methodologies. J. Radioanal. Nucl. Chem. 2019, 322, 1257–1266, https://doi.org/10.1007/s10967-019-06797-y.Search in Google Scholar

71. Fassbender, M. E. Guest edited collection: radioisotopes and radiochemistry in health science. Sci. Rep. 2020, 10, 340, https://doi.org/10.1038/s41598-019-56278-1.Search in Google Scholar

72. Qaim, S. M., Hohn, A., Bastian, T., El-Azoney, K. M., Blessing, G., Spellerberg, S., Scholten, B., Coenen, H. H. Some optimisation studies relevant to the production of high-purity 124I and 120gI at a small-sized cyclotron. Appl. Radiat. Isot. 2003, 58, 69–78, https://doi.org/10.1016/s0969-8043(02)00226-9.Search in Google Scholar

73. Breunig, K., Spahn, I., Spellerberg, S., Coenen, H. H. Production of no-carrier-added radiobromine: new nickel selenide target and optimized separation by dry distillation. Radiochim. Acta 2015, 103, 397–402, https://doi.org/10.1515/ract-2014-2366.Search in Google Scholar

74. Giesen, K., Spahn, I., Neumaier, B. Thermochromatographic separation of 45Ti and subsequent radiosynthesis of [45Ti]salan. J. Radioanal. Nucl. Chem. 2020, 326, 1281–1287, https://doi.org/10.1007/s10967-020-07376-2.Search in Google Scholar

75. Müller, C., Zhernosekov, K., Köster, U., Johnston, K., Hohn, A., van der Walt, N. T., Türler, A., Schibli, R. A unique matched quadruplet of terbium radioisotops for PET and SPECT and for α- and β- radionuclide therapy: an in-vivo proof-of-concept study with a new receptor-targeted folate derivate. J. Nucl. Med. 2012, 53, 1951–1959, https://doi.org/10.2967/jnumed.112.107540.Search in Google Scholar

76. Allen, B. J., Goozee, G., Sarkar, S., Beyer, G., Morel, C., Byrne, A. P. Production of terbium-152 by heavy ion reactions and proton induced spallation. Appl. Radiat. Isot. 2001, 54, 53–58, https://doi.org/10.1016/s0969-8043(00)00164-0.Search in Google Scholar

77. Spellerberg, S., Reimer, P., Blessing, G., Coenen, H. H., Qaim, S. M. Production of 55Co and 57Co via proton induced reactions on highly enriched 58Ni. Appl. Radiat. Isot. 1998, 49, 1519–1522, https://doi.org/10.1016/s0969-8043(97)10119-1.Search in Google Scholar

78. Reischl, G., Rösch, F., Machulla, H. J. Electrochemical separation and purification of 89Y. Radiochim. Acta 2002, 90, 225–228, https://doi.org/10.1524/ract.2002.90.4_2002.225.Search in Google Scholar

79. Rösch, F., Qaim, S. M., Stöcklin, G. Production of the positron emitting radioisotope 86Y for nuclear medical application. Appl. Radiat. Isot. 1993, 44, 677–681, https://doi.org/10.1016/0969-8043(93)90131-s.Search in Google Scholar

80. Kettern, K., Linse, K. H., Spellerberg, S., Coenen, H. H., Qaim, S. M. Radiochemical studies relevant to the production of 86Y and 88Y at a small-sized cyclotron. Radiochim. Acta 2002, 90, 845–849, https://doi.org/10.1524/ract.2002.90.12_2002.845.Search in Google Scholar

81. Dirks, C., Scholten, B., Happel, S., Zulauf, A., Bombard, A., Jungclas, H. Characterisation of a Cu selective resin and its application to the production of 64Cu. J. Radioanal. Nucl. Chem. 2010, 286, 671–674, https://doi.org/10.1007/s10967-010-0744-9.Search in Google Scholar

82. Kandil, S. A., Scholten, B., Saleh, Z. A., Youssef, A. M., Qaim, S. M. A comparative study on the separation of radiozirconium via ion exchange and solvent extraction techniques, with particular reference to the production of 88Zr and 89Zr in proton induced reactions on Yttrium. J. Radioanal. Nucl. Chem. 2007, 274, 45–52, https://doi.org/10.1007/s10967-006-6892-2.Search in Google Scholar

83. Oláh, Z., Kremmer, T., Vogg, A. T., Varga, Z., Szücs, Z., Neumaier, B., Dóczi, R. Novel ion exchange chromatography method for n.c.a. arsenic separation. Appl. Radiat. Isot. 2017, 122, 111–115, https://doi.org/10.1016/j.apradiso.2017.01.008.Search in Google Scholar PubMed

84. Hassan, K. F., Spellerberg, S., Scholten, B., Saleh, Z. A., Qaim, S. M. Development of an ion-exchange method for separation of radioiodine from tellurium and antimony and its application to the production of 124I via the 121Sb(α, n)-process. J. Radioanal. Nucl. Chem. 2014, 302, 689–694, https://doi.org/10.1007/s10967-014-3270-3.Search in Google Scholar

85. Uddin, M. S., Qaim, S. M., Hermanne, A., Spahn, I., Spellerberg, S., Scholten, B., Hossain, S. M., Coenen, H. H. Ion-exchange separation of radioiodine and its application to production of 124I by alpha particle induced reactions on antimony. Radiochim. Acta 2015, 103, 587–593, https://doi.org/10.1515/ract-2014-2359.Search in Google Scholar

86. Kilian, K., Cheda, L., Sitarz, M., Szkliniarz, K., Choiński, J., Stolarz, A. Separation of 44Sc from natural calcium carbonate targets for synthesis of 44Sc-DOTATATE. Molecules 2018, 23, 1787, https://doi.org/10.3390/molecules23071787.Search in Google Scholar

87. Brezovcsik, K., Kovács, Z., Szelecsényi, F. Separation of radioactive terbium from massive Gd targets for medical use. J. Radioanal. Nucl. Chem. 2018, 316, 775–780, https://doi.org/10.1007/s10967-018-5718-3.Search in Google Scholar

88. Kazakov, A. G., Aliev, R. A., Bodrov, A. Y., Priselkova, A. B., Kalmykov, S. Separation of radioisotopes of terbium from a europium target irradiated by 27 MeV α-particles. Radiochim. Acta 2018, 106, 135–140, https://doi.org/10.1515/ract-2017-2777.Search in Google Scholar

89. Aliev, R. A., Khomenko, I. A., Kormazeva, E. S. Separation of 167Tm, 165Er and 169Yb from erbium targets irradiated by 60 MeV alpha particles. J. Radioanal. Nucl. Chem. 2021, 329, 983–989, https://doi.org/10.1007/s10967-021-07865-y.Search in Google Scholar

90. Kandil, S. A., Scholten, B., Hassan, K. F., Hanafi, H. A., Qaim, S. M. A comparative study on the separation of radioyttrium from Sr- and Rb-targets via ion-exchange and solvent extraction techniques, with special reference to the production of no-carrier-added 86Y, 87Y and 88Y using a cyclotron. J. Radioanal. Nucl. Chem. 2009, 279, 823–832, https://doi.org/10.1007/s10967-008-7407-0.Search in Google Scholar

91. Nayak, D., Lahiri, S., Ramaswan, A., Manohar, S. B., Das, N. R. Separation of carrier free 151,152Tb produced in 16O irradiated lanthanum oxide matrix. Appl. Radiat. Isot. 1999, 51, 631–636, https://doi.org/10.1016/s0969-8043(99)00106-2.Search in Google Scholar

92. Königs, U., Humpert, S., Spahn, I., Qaim, S. M., Neumaier, B. Isolation of high purity 73Se using solid phase extraction after selective 4,5-[73Se]benzopiazselenol formation with aminonaphthalene. Radiochim. Acta 2018, 106, 497–505, https://doi.org/10.1515/ract-2017-2864.Search in Google Scholar

93. Martini, P., Ucceli, L., Duatti, A., Marvelli, L., Esposito, J., Boschi, A. Highly efficient micro-scale liquid-liquid in-flow extraction of 99mTc from molybdenum. Molecules 2021, 26, 5699, https://doi.org/10.3390/molecules26185699.Search in Google Scholar PubMed PubMed Central

94. Martini, P., Adamo, A., Syna, N., Boschi, A., Uccelli, L., Weeranoppanant, N., Markham, N., Pascali, G. Perspectives on the use of liquid extraction for radioisotope purification. Molecules 2019, 24, 334, https://doi.org/10.3390/molecules24020334.Search in Google Scholar PubMed PubMed Central

95. Pedersen, K. S., Imbrogno, J., Fonslet, J., Lusardi, M., Jensen, K. F., Zhuralev, F. Liquid–liquid extraction in flow of the radioisotope titanium-45 for positron emission tomography applications. React. Chem. Eng. 2018, 3, 898–904, https://doi.org/10.1039/c8re00175h.Search in Google Scholar

96. Shehata, M. M., Scholten, B., Spahn, I., Coenen, H. H., Qaim, S. M. Separation of radioarsenic from irradiated germanium oxide targets for the production of 71As and 72As. J. Radioanal. Nucl. Chem. 2011, 287, 435–442, https://doi.org/10.1007/s10967-010-0699-x.Search in Google Scholar

97. Ermolaev, S. V., Zhuikov, B. L., Kokhanyuk, V. M., Abramov, A. A., Togaeva, N. R., Khamianov, S. V., Srivastava, S. C. Production of no-carrier-added 117mSn from proton irradiated antimony. J. Radioanal. Nucl. Chem. 2009, 280, 319–324, https://doi.org/10.1007/s10967-009-0520-x.Search in Google Scholar

98. Ermolaev, S. V., Zhuikov, B. L., Kokhanyuk, V. M., Matushko, V. L., Srivastava, S. C. Cross sections and production yields of 117mSn and other radionuclides generated in natural and enriched antimony with protons up to 145 MeV. Radiochim. Acta 2020, 108, 327–3511, https://doi.org/10.1515/ract-2019-3158.Search in Google Scholar

99. Mastren, T., Radchenko, V., Bach, H., Balkin, E., Birnbaum, E., Brugh, M., Engle, J., Gott, M., Guthrie, J., Hennkens, H., John, K., Ketring, A., Kuchuk, M., Maassen, J., Naranjo, C., Nortier, F., Phelps, T., Jurisson, S., Wilbur, D., Fassbender, M. Bulk production and evaluation of high specific activity 186gRe for cancer therapy using enriched 186WO3 targets in a proton beam. Nucl. Med. Biol. 2017, 49, 24–29, https://doi.org/10.1016/j.nucmedbio.2017.02.006.Search in Google Scholar PubMed

100. Balkin, E. R., Smith, B. E., Strong, K. T., Pauzauskie, P. J., Fassbender, M. E., Cutler, C. S., Ketring, A. R., Jurisson, S. S., Wilbur, D. S. Scale-up of high specific activity 186gRe production using graphite-encased thick 186W targets and demonstration of an efficient target recycling process. Radiochim. Acta 2017, 105, 1071–1081, https://doi.org/10.1515/ract-2017-2780.Search in Google Scholar

101. Qaim, S. M. The present and future of medical radionuclide production. Radiochim. Acta 2012, 100, 635–651, https://doi.org/10.1524/ract.2012.1966.Search in Google Scholar

102. Qaim, S. M. Therapeutic radionuclides and nuclear data. Radiochim. Acta 2001, 89, 297–302, https://doi.org/10.1524/ract.2001.89.4-5.297.Search in Google Scholar

103. Qaim, S. M., Spahn, I. Development of novel radionuclides for medical applications. J. Label. Compd. Radiopharm. 2018, 61, 126–140, https://doi.org/10.1002/jlcr.3578.Search in Google Scholar PubMed

104. George, K. J. H., Borjian, S., Cross, M. C., Hicks, J. W., Schaffer, P., Kovacs, M. S. Expanding the PET radioisotope universe utilizing solid targets on small medical cyclotrons. RSC Adv. 2021, 11, 31098–31123, https://doi.org/10.1039/d1ra04480j.Search in Google Scholar

105. Rösch, F., Herzog, H., Qaim, S. M. The beginning and development of the theranostic approach in nuclear medicine, as exemplified by the radionuclide pair 86Y and 90Y. Pharmaceuticals 2017, 10, 56, https://doi.org/10.3390/ph10020056.Search in Google Scholar

106. Qaim, S. M., Scholten, B., Neumaier, B. New developments in the production of theranostic pairs of radionuclides. J. Radioanal. Nucl. Chem. 2018, 318, 1493–1509, https://doi.org/10.1007/s10967-018-6238-x.Search in Google Scholar

107. Krajewski, S., Cydzik, I., Abbas, K., Bulgheroni, A., Simonelli, F., Holzwarth, U., Bilewicz, A. Cyclotron production of 44Sc for clinical application. Radiochim. Acta 2013, 101, 333–338, https://doi.org/10.1524/ract.2013.2032.Search in Google Scholar

108. Van der Meulen, N., Bunka, M., Dumnanich, K. A., Müller, C., Haller, S., Vermeulen, C., Türler, A., Schibli, R. Cyclotron production of 44Sc: from bench to bedside. Nucl. Med. Biol. 2015, 42, 745–751, https://doi.org/10.1016/j.nucmedbio.2015.05.005.Search in Google Scholar

109. Buchholz, M., Spahn, I., Coenen, H. H. Optimized separation procedure for production of no-carrier-added radiomanganese for positron emission tomography. Radiochim. Acta 2015, 103, 893–899, https://doi.org/10.1515/ract-2015-2506.Search in Google Scholar

110. Graves, S. A., Hernandez, R., Fonslet, J., England, C. G., Valdovinos, H. F., Ellison, P. A., Barnhart, T. E., Elema, D. R., Theuer, C. P., Cai, W., Nickles, R. J., Severin, G. W. Novel preparation methods of 52Mn for ImmunoPET imaging. Bioconjugate Chem. 2015, 26, 2118–2124, https://doi.org/10.1021/acs.bioconjchem.5b00414.Search in Google Scholar

111. Fonslet, S., Tietze, S., Jensen, A. I., Graves, S. A., Severin, G. W. Optimized procedures for manganese-52: production, separation and radiolabeling. Appl. Radiat. Isot. 2017, 121, 38–43, https://doi.org/10.1016/j.apradiso.2016.11.021.Search in Google Scholar

112. Barrett, K. E., Aluicio-Sarduy, E., Happel, S., Olson, A. P., Kutyreff, C. J., Ellison, P. A., Barnhart, T. E., Engle, J. W. Characterization of actinide resin for separation of 51,52gMn from bulk target material. Nucl. Med. Biol. 2021, 96/97, 19–26, https://doi.org/10.1016/j.nucmedbio.2021.02.005.Search in Google Scholar

113. McCarthy, D. W., Shefer, R. E., Klinkowstein, R. E., Bass, L. A., Margeneau, W. H., Cutler, C. S., Anderson, C. J., Welch, M. J. Efficient production of high specific activity 64Cu using a biomedical cyclotron. Nucl. Med. Biol. 1997, 24, 35–43, https://doi.org/10.1016/s0969-8051(96)00157-6.Search in Google Scholar

114. Szajek, L. P., Meyer, W., Plascjak, P., Eckelman, W. C. Semi-remote production of [64Cu]CuCl2 and preparation of high specific activity [64Cu]Cu-ATSM for PET studies. Radiochim. Acta 2005, 93, 239–244, https://doi.org/10.1524/ract.93.4.239.64070.Search in Google Scholar

115. Sadeghi, M., Kakavand, T., Rajabifar, S., Mokhtari, L., Rahimi-Nezhad, A. Cyclotron production of 68Ga via proton-induced reaction on 68Zn target. Nukleonika 2009, 54, 25–28.Search in Google Scholar

116. Engle, J. W., Lopez-Rodriguez, V., Gaspar-Carcamo, R. E., Valdovinos, H. F., Valle-Gonzalez, M., Trejo-Ballado, F., Severin, G. W., Barnhart, T. E., Nickels, R. J., Avila-Rodriguez, M. A. Very high specific activity 66/68Ga from zinc targets for PET. Appl. Radiat. Isot. 2012, 70, 1792–1796, https://doi.org/10.1016/j.apradiso.2012.03.030.Search in Google Scholar

117. Lin, M., Waligorski, G. J., Lepera, C. G. Production of curie quantities of 68Ga with a medical cyclotron via the 68Zn(p, n)68Ga reaction. Appl. Radiat. Isot. 2018, 133, 1–3, https://doi.org/10.1016/j.apradiso.2017.12.010.Search in Google Scholar

118. Mushtaq, A., Qaim, S. M., Stöcklin, G. Production of 73Se via (p,3n) and (d,4n) reactions on arsenic. Appl. Radiat. Isot. 1988, 39, 1085–1091, https://doi.org/10.1016/0883-2889(88)90146-3.Search in Google Scholar

119. Blessing, G., Lavi, N., Hashimoto, K., Qaim, S. M. Thermochromatographic separation of radioselenium from irradiated Cu3As-target: production of no-carrier added 75Se. Radiochim. Acta 1994, 65, 93–98, https://doi.org/10.1524/ract.1994.65.2.93.Search in Google Scholar

120. Meijs, W. E., Herscheid, J. D. M., Haisma, H. J., Wijbrandt, R., van Langevelde, F., Van Leuffen, P. J., Mooy, R., Pinedo, H. M. Production of highly pure no-carrier added 89Zr for the labelling of antibodies with a positron emitter. Appl. Radiat. Isot. 1994, 45, 1143–1147, https://doi.org/10.1016/0969-8043(94)90029-9.Search in Google Scholar

121. Holland, J. P., Sheh, Y., Lewis, J. S. Standardized methods for the production of high specific-activity zirconium-89. Nucl. Med. Biol. 2009, 36, 729–739, https://doi.org/10.1016/j.nucmedbio.2009.05.007.Search in Google Scholar

122. Rösch, F., Novgorodov, A. F., Qaim, S. M. Thermochromatographic separation of 94mTc from enriched molybdenum targets and its large scale production for nuclear medical application. Radiochim. Acta 1994, 64, 113–120, https://doi.org/10.1524/ract.1994.64.2.113.Search in Google Scholar

123. Scholten, B., Lambrecht, R. M., Cogneau, M., Vera Ruiz, H., Qaim, S. M. Excitation functions for the cyclotron production of 99mTc and 99Mo. Appl. Radiat. Isot. 1999, 51, 69–80, https://doi.org/10.1016/s0969-8043(98)00153-5.Search in Google Scholar

124. Gagnon, K., Bénard, F., Kovacs, M., Ruth, T. J., Schaffer, P., Wilson, J. S., McQuarrie, S. A. Cyclotron production of 99mTc: experimental measurement of the 100Mo(p, x)99Mo, 99mTc and 99gTc excitation functions from 8 to 18 MeV. Nucl. Med. Biol. 2011, 38, 907–916, https://doi.org/10.1016/j.nucmedbio.2011.02.010.Search in Google Scholar PubMed

125. Qaim, S. M., Sudár, S., Scholten, B., Koning, A. J., Coenen, H. H. Evaluation of excitation functions of 100Mo(p,d+pn)99Mo and 100Mo(p,2n)99mTc reactions: estimation of long-lived Tc-impurity and its implication on the specific activity of cyclotron-produced 99mTc. Appl. Radiat. Isot. 2014, 85, 101–113, https://doi.org/10.1016/j.apradiso.2013.10.004.Search in Google Scholar PubMed

126. Martini, P., Boschi, A., Cicoria, G., Uccelli, L., Pasquali, M., Duatti, A., Pupillo, G., Marengo, M., Loriggiola, M., Esposito, J. A solvent-extraction module for cyclotron production of high-purity technetium-99m. Appl. Radiat. Isot. 2016, 118, 302–307, https://doi.org/10.1016/j.apradiso.2016.10.002.Search in Google Scholar PubMed

127. Andersson, J. D., Thomas, B., Selivanova, S. V., Berthelette, E., Wilson, J. S., McEwan, A. J. B., Gagnon, K. Robust high-yield ∼1 TBq production of cyclotron based sodium [99mTc]pertechnetate. Nucl. Med. Biol. 2018, 60, 63–70, https://doi.org/10.1016/j.nucmedbio.2018.02.003.Search in Google Scholar PubMed

128. Smith, N. A., Browers, D. L., Ehst, D. A. The production, separation, and use of 67Cu for radioimmunotherapy: a review. Appl. Radiat. Isot. 2012, 70, 2377–2383, https://doi.org/10.1016/j.apradiso.2012.07.009.Search in Google Scholar PubMed

129. Katabuchi, T., Watanabe, S., Ishioka, N. S., Lida, Y., Hanaoka, H., Endo, K., Matsuhashi, S. Production of 67Cu via the 68Zn(p,2p)67Cu reaction and recovery of 68Zn target. J. Radioanal. Nucl. Chem. 2008, 277, 467–470, https://doi.org/10.1007/s10967-007-7144-9.Search in Google Scholar

130. Medvedev, D. G., Mausner, L. F., Meinken, G. E., Lurczak, S. P., Schnakenberg, H., Dodge, C. J., Korach, E. M., Srivastava, S. C. Development of a large scale production of 67Cu from 68Zn at the high energy proton accelerator: closing the 68Zn cycle. Appl. Radiat. Isot. 2012, 70, 423–429, https://doi.org/10.1016/j.apradiso.2011.10.007.Search in Google Scholar PubMed

131. Hussain, M., Sudár, S., Aslam, M. N., Malik, A. A., Ahmad, R., Qaim, S. M. Evaluation of charged particle induced reaction cross section data for production of the important therapeutic radionuclide 186Re. Radiochim. Acta 2010, 98, 385–395, https://doi.org/10.1524/ract.2010.1733.Search in Google Scholar

132. Fassbender, M. E., Ballard, B., Birnbaum, E. R., Engle, J. W., John, K. D., Maassen, J. R., Nortier, F. M., Lenz, J. W., Cutler, C. S., Ketring, A. R., Jurisson, S. S., Wilbur, D. S. Proton irradiation parameters and chemical separation procedure for the bulk production of high-specific-activity 186gRe using WO3 targets. Radiochim. Acta 2013, 101, 339–346, https://doi.org/10.1524/ract.2013.2031.Search in Google Scholar

133. Griswold, J. R., Medvedev, D. G., Engle, J. W., Copping, R., Fitzsimmons, J. M., Radchenko, V., Cooley, J. C., Fassbender, M. E., Denton, D. L., Murphy, K. E., Owens, A. C., Birnbaum, E. R., John, K. D., Nortier, F. M., Stracener, D. W., Heilbronn, L. H., Mausner, L. F., Mirzadeh, S. Large scale accelerator production of 225Ac: effective cross sections for 78–192 MeV protons incident on 232Th targets. Appl. Radiat. Isot. 2016, 118, 366–374, https://doi.org/10.1016/j.apradiso.2016.09.026.Search in Google Scholar PubMed

134. Engle, J. W., Weidner, J. W., Ballard, B. D., Fassbender, M. E., Hudston, L. A., Jackman, K. R., Dry, D. E., Wolfsberg, L. E., Bitteker, L. J., Ullmann, J. L., Gulley, M. S., Pillai, C., Goff, G., Birnbaum, E. R., John, K. D., Mashnik, S. G., Nortier, F. M. Ac, La, and Ce radioimpurities in 225Ac produced in 40–200 MeV proton irradiations of thorium. Radiochim. Acta 2014, 102, 569–589, https://doi.org/10.1515/ract-2013-2179.Search in Google Scholar

135. Radchenko, V., Engle, J. W., Wilson, J. J., Maassen, J. R., Nortier, F. M., Birnbaum, E. R., John, K. D., Fassbender, M. E. Formation cross-sections and chromatographic separation of protactinium isotopes formed in proton-irradiated thorium metal. Radiochim. Acta 2016, 104, 291–304, https://doi.org/10.1515/ract-2015-2486.Search in Google Scholar

136. Robertson, A. K. H., Ramogida, C. F., Schaffer, P., Radchenko, V. Development of 225Ac radiopharmaceuticals: TRIUMF perspectives and experiences. Curr. Rad. 2018, 11, 156–172, https://doi.org/10.2174/1874471011666180416161908.Search in Google Scholar PubMed PubMed Central

137. Nagatsu, K., Suzuki, H., Fukada, M., Ito, T., Ichinose, J., Honda, Y., Minegishi, K., Hagashi, T., Zhang, M.-R. Cyclotron production of 225Ac from an electroplated 226Ra target. Eur. J. Nucl. Med. Mol. Imag. 2021, 49, 279–289; https://doi.org/10.1007/s00259-021-05460-7.Search in Google Scholar PubMed PubMed Central

138. Radchenko, V., Engle, J. W., Wilson, J. J., Maassen, J. R., Nortier, F. M., Taylor, W. A., Birnbaum, E. R., Hudston, L. A., John, K. D., Fassbender, M. E. Application of ion exchange and extraction chromatography to the separation of actinium from proton-irradiated thorium metal for analytical purposes. J. Chromatogr. A 2015, 1380, 55–63, https://doi.org/10.1016/j.chroma.2014.12.045.Search in Google Scholar PubMed

139. Melville, G., Meriarty, H., Metcalfe, P., Knittel, T., Allen, B. J. Production of Ac-225 for cancer therapy by photon-induced transmutation of Ra-226. Appl. Radiat. Isot. 2007, 65, 1014–1022, https://doi.org/10.1016/j.apradiso.2007.03.018.Search in Google Scholar PubMed

Received: 2022-01-24
Revised: 2022-04-13
Accepted: 2022-04-18
Published Online: 2022-05-06
Published in Print: 2022-06-27

© 2022 Walter de Gruyter GmbH, Berlin/Boston

Articles in the same Issue

  1. Frontmatter
  2. Editorial: Diamond Jubilee Issue
  3. Sixty years of Radiochimica Acta: a brief overview with emphasis on the last 10 years
  4. A. Chemistry of Radioelements
  5. Five decades of GSI superheavy element discoveries and chemical investigation
  6. Chemistry of the elements at the end of the actinide series using their low-energy ion-beams
  7. Sonochemistry of actinides: from ions to nanoparticles and beyond
  8. Theoretical insights into the reduction mechanism of neptunyl nitrate by hydrazine derivatives
  9. The speciation of protactinium since its discovery: a nightmare or a path of resilience
  10. On the volatility of protactinium in chlorinating and brominating gas media
  11. The aqueous chemistry of radium
  12. B. Energy Related Radiochemistry
  13. Selective actinide(III) separation using 2,6-bis[1-(propan-1-ol)-1,2,3-triazol-4-yl]pyridine (PyTri-Diol) in the innovative-SANEX process: laboratory scale counter current centrifugal contactor demonstration
  14. Fate of Neptunium in nuclear fuel cycle streams: state-of-the art on separation strategies
  15. Uranium adsorption – a review of progress from qualitative understanding to advanced model development
  16. Targeted synthesis of carbon-supported titanate nanofibers as host structure for nuclear waste immobilization
  17. Progress of energy-related radiochemistry and radionuclide production in the Republic of Korea
  18. C. Nuclear Data
  19. How accurate are half-life data of long-lived radionuclides?
  20. Status of the decay data for medical radionuclides: existing and potential diagnostic γ emitters, diagnostic β+ emitters and therapeutic radioisotopes
  21. An overview of nuclear data standardisation work for accelerator-based production of medical radionuclides in Pakistan
  22. An overview of activation cross-section measurements of some neutron and charged-particle induced reactions in Bangladesh
  23. Nuclear reaction data for medical and industrial applications: recent contributions by Egyptian cyclotron group
  24. Nuclear data for light charged particle induced production of emerging medical radionuclides
  25. D. Radionuclides and Radiopharmaceuticals
  26. The role of chemistry in accelerator-based production and separation of radionuclides as basis for radiolabelled compounds for medical applications
  27. Production of neutron deficient rare earth radionuclides by heavy ion activation
  28. Evaluation of 186WS2 target material for production of high specific activity 186Re via proton irradiation: separation, radiolabeling and recovery/recycling
  29. Special radionuclide production activities – recent developments at QST and throughout Japan
  30. China’s radiopharmaceuticals on expressway: 2014–2021
  31. E. Environmental Radioactivity
  32. A summary of environmental radioactivity research studies by members of the Japan Society of Nuclear and Radiochemical Sciences
Downloaded on 3.12.2025 from https://www.degruyterbrill.com/document/doi/10.1515/ract-2022-0017/html
Scroll to top button