Home Sonochemistry of actinides: from ions to nanoparticles and beyond
Article
Licensed
Unlicensed Requires Authentication

Sonochemistry of actinides: from ions to nanoparticles and beyond

  • Sergey I. Nikitenko EMAIL logo , Matthieu Virot and Philippe Moisy
Published/Copyright: April 15, 2022

Abstract

Sonochemistry studies chemical and physical effects in liquids submitted to power ultrasound. These effects arise not from a direct interaction of molecules with sound waves, but rather from the acoustic cavitation: the nucleation, growth, and implosive collapse of microbubbles in liquids submitted to power ultrasound. The violent implosion of bubbles leads to the formation of chemically reactive species. In principle, each cavitation bubble can be considered as a microreactor initiating chemical reactions at mild conditions. In addition, microjets and shock waves accompanied bubble collapse produce fragmentation, dispersion and erosion of solid surfaces or particles. Microbubbles oscillating in liquids also enable nucleation and precipitation of nanosized actinide compounds with specific morphology. This review focuses on the versatile sonochemical processes with actinide ions and particles in homogenous solutions and heterogenous systems. The redox reactions in aqueous solutions, dissolution or precipitation of refractory solids, synthesis of actinide nanoparticles, and ultrasonically driving decontamination are considered. The guideline for further research is also discussed.


Corresponding author: Sergey I. Nikitenko, ICSM, Univ Montpellier, UMR 5257, CEA-CNRS-UM-ENSCM, Marcoule, France, E-mail:

  1. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: None declared.

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

1. Richards, W. T., Loomis, A. L. The chemical effects of high frequency sound waves I. A preliminary survey. J. Am. Chem. Soc. 1927, 49, 3086–3100; https://doi.org/10.1021/ja01411a015.Search in Google Scholar

2. Schmitt, F. O., Johnson, C. H., Olson, A. R. Oxidations promoted by ultrasonic radiation. J. Am. Chem. Soc. 1929, 51, 370–375; https://doi.org/10.1021/ja01377a004.Search in Google Scholar

3. Neppiras, E. A. Acoustic cavitation. Phys. Rep. 1980, 61, 159–251; https://doi.org/10.1016/0370-1573(80)90115-5.Search in Google Scholar

4. Fuchs, F. J. 19 – ultrasonic cleaning and washing of surfaces. In Power Ultrasonics; Gallego-Juárez, J. A., Graff, K. F., Eds. Woodhead Publishing: Oxford, UK, 2015, pp. 577–609; https://doi.org/10.1016/b978-1-78242-028-6.00019-3.Search in Google Scholar

5. Chemat, F. Eco-extraction du végétal, procédés innovants et solvants alternatifs; Dunod: Paris, 2015; p. XI-322.Search in Google Scholar

6. Ashokkumar, M., Sunartio, D., Kentish, S., Mawson, R., Simons, L., Vilkhu, K., Versteeg, C. Modification of food ingredients by ultrasound to improve functionality: a preliminary study on a model system. Innovat. Food Sci. Emerg. Technol. 2008, 9, 155–160; https://doi.org/10.1016/j.ifset.2007.05.005.Search in Google Scholar

7. Feng, H., Barbosa-Canovas, G., Weiss, J. Ultrasound Technologies for Food and Bioprocessing; Springer: New York, USA, 2011.10.1007/978-1-4419-7472-3Search in Google Scholar

8. Sonochemistry, Adewuyi Y. G. Environmental science and engineering applications. Ind. Eng. Chem. Res. 2001, 40, 4681–4715.10.1021/ie010096lSearch in Google Scholar

9. Mahamuni, N. N., Adewuyi, Y. G. Advanced oxidation processes (AOPs) involving ultrasound for waste water treatment: a review with emphasis on cost estimation. Ultrason. Sonochem. 2010, 17, 990–1003; https://doi.org/10.1016/j.ultsonch.2009.09.005.Search in Google Scholar PubMed

10. Bang, J. H., Suslick, K. S. Applications of ultrasound to the synthesis of nanostructured materials. Adv. Mater. 2010, 22, 1039–1059; https://doi.org/10.1002/adma.200904093.Search in Google Scholar PubMed

11. Nikonov, M. V. Chemical Reactions of Actinides under the Effect of Ultrasound. PhD thesis. Moscow: USSR, 1991.Search in Google Scholar

12. Dalodière, E., Virot, M., Moisy, P., Nikitenko, S. I. Effect of ultrasonic frequency on H2O2 sonochemical formation rate in aqueous nitric acid solutions in the presence of oxygen. Ultrason. Sonochem. 2016, 29, 198–204; https://doi.org/10.1016/j.ultsonch.2015.09.014.Search in Google Scholar PubMed

13. Humblot, A., Grimaud, L., Allavena, A., Amaniampong, P. N., De Oliveira Vigier, K., Chave, T., Streiff, S., Jérôme, F. Conversion of ammonia to hydrazine induced by high-frequency ultrasound. Angew. Chem. Int. Ed. 2021, 60, 25230–25234; https://doi.org/10.1002/anie.202109516.Search in Google Scholar

14. Mason, T. J., Lorimer, J. P. Applied Sonochemistry, The Uses of Power Ultrasound in Chemistry and Processing; Wiley VCH: Weinheim, 2002.10.1002/352760054XSearch in Google Scholar

15. Venault, L. De l’influence des ultrasons sur la reactivité de l’Uranium (U(IV)/U(VI)) et du Plutonium (Pu(III)/Pu(IV)) en solution aqueuse nitrique. PhD thesis. Paris XI, Orsay, France, 1998.Search in Google Scholar

16. Juillet, F. Etude de la dissolution d’oxydes réfractaires (CeO2 et PuO2) assistée par sonochimie. PhD thesis. Paris XI, 1997.Search in Google Scholar

17. Nikitenko, S. I., Venault, L., Pflieger, R., Chave, T., Bisel, I., Moisy, P. Potential applications of sonochemistry in spent nuclear fuel reprocessing: a short review. Ultrason. Sonochem. 2010, 17, 1033–1040; https://doi.org/10.1016/j.ultsonch.2009.11.012.Search in Google Scholar

18. Rubio, F., Blandford, E. D., Bond, L. J. Survey of advanced nuclear technologies for potential applications of sonoprocessing. Ultrasonics 2016, 71, 211–222; https://doi.org/10.1016/j.ultras.2016.06.017.Search in Google Scholar

19. Suslick, K. S., McNamara, W. B., Didenko, Y. In: Hot Spot Conditions during Multi-Bubble Cavitation; NATO Advanced Study Institute on Sonochemistry and Sonoluminescence: Leavenworth, Washington, USA, 1997; pp 191–204.10.1007/978-94-015-9215-4_16Search in Google Scholar

20. Nikitenko, S. I., Pflieger, R. Toward a new paradigm for sonochemistry: short review on nonequilibrium plasma observations by means of MBSL spectroscopy in aqueous solutions. Ultrason. Sonochem. 2017, 35, 623–630; https://doi.org/10.1016/j.ultsonch.2016.02.003.Search in Google Scholar

21. Mark, G., Tauber, A., Rudiger, L. A., Schuchmann, H. P., Schulz, D., Mues, A., von Sonntag, C. OH-radical formation by ultrasound in aqueous solution - Part II: terephthalate and Fricke dosimetry and the influence of various conditions on the sonolytic yield. Ultrason. Sonochem. 1998, 5, 41–52; https://doi.org/10.1016/s1350-4177(98)00012-1.Search in Google Scholar

22. Nikitenko, S. I., Venault, L., Moisy, P. Scavenging of OH radicals produced from H2O sonolysis with nitrate ions. Ultrason. Sonochem. 2004, 11, 139–142; https://doi.org/10.1016/j.ultsonch.2004.01.009.Search in Google Scholar PubMed

23. Petrier, C., Jeunet, A., Luche, J. L., Reverdy, G. Unexpected frequency effects on the rate of oxidative processes induced by ultrasound. J. Am. Chem. Soc. 1992, 114, 3148–3150; https://doi.org/10.1021/ja00034a077.Search in Google Scholar

24. Ji, R., Pflieger, R., Virot, M., Nikitenko, S. I. Multibubble sonochemistry and sonoluminescence at 100 kHz: the missing link between low- and high-frequency ultrasound. J. Phys. Chem. B 2018, 122, 6989–6994; https://doi.org/10.1021/acs.jpcb.8b04267.Search in Google Scholar PubMed

25. Pflieger, R., Chave, T., Vite, G., Jouve, L., Nikitenko, S. I. Effect of operational conditions on sonoluminescence and kinetics of H2O2 formation during the sonolysis of water in the presence of Ar/O2 gas mixture. Ultrason. Sonochem. 2015, 26, 169–175; https://doi.org/10.1016/j.ultsonch.2015.02.005.Search in Google Scholar

26. Margulis, I. M., Margulis, M. A. Dependence of the rate of formation of nitrate ions in water on the intensity and frequency of ultrasound waves. Russ. J. Phys. Chem. A 2009, 83, 2233–2237; https://doi.org/10.1134/s0036024409130093.Search in Google Scholar

27. Misik, V., Riesz, P. Detection of Primary Free Radical Species in Aqueous Sonochemistry by EPR Spectroscopy; NATO Advanced Study Institute on Sonochemistry and Sonoluminescence: Leavenworth, Washington, 1997; pp 225–236.10.1007/978-94-015-9215-4_18Search in Google Scholar

28. Okitsu, K., Itano, Y. Formation of NO2− and NO3− in the sonolysis of water: temperature- and pressure-dependent reactions in collapsing air bubbles. Chem. Eng. J. 2022, 427, 131517; https://doi.org/10.1016/j.cej.2021.131517.Search in Google Scholar

29. Supeno, Kruus. P. Sonochemical formation of nitrate and nitrite in water. Ultrason. Sonochem. 2000, 7, 109–113; https://doi.org/10.1016/s1350-4177(99)00043-7.Search in Google Scholar

30. Ouerhani, T., Pflieger, R., Ben Messaoud, W., Nikitenko, S. I. Spectroscopy of sonoluminescence and sonochemistry in water saturated with N2-Ar mixtures. J. Phys. Chem. B 2015, 119, 15885–15891; https://doi.org/10.1021/acs.jpcb.5b10221.Search in Google Scholar

31. Nikitenko, S. I., Seliverstov, A. F. A synergetic effect in nitrous acid formation by sonolysis of nitric acid in the presence of nitrous oxide. Russ. Chem. Bull. 2000, 49, 2077–2079; https://doi.org/10.1023/a:1009596614257.10.1023/A:1009596614257Search in Google Scholar

32. Hart, E. J., Henglein, A. Sonolytic decomposition of nitrous oxide in aqueous solution. J. Phys. Chem. 1986, 90, 5992–5995; https://doi.org/10.1021/j100280a105.Search in Google Scholar

33. Nikitenko, S. I., Martinez, P., Chave, T., Billy, I. Sonochemical disproportionation of carbon monoxide in water: evidence for Treanor effect during multibubble cavitation. Angew. Chem. Int. Ed. 2009, 48, 9529–9532; https://doi.org/10.1002/anie.200904275.Search in Google Scholar

34. Venault, L., Moisy, P., Nikitenko, S. I., Madic, C. Kinetics of nitrous acid formation in nitric acid solutions under the effect of power ultrasound. Ultrason. Sonochem. 1997, 4, 195–204; https://doi.org/10.1016/s1350-4177(97)00010-2.Search in Google Scholar

35. Moisy, P., Bisel, I., Genvo, F., Rey-Gaurez, F., Venault, L., Blanc, P. Preliminary results on the effect of power ultrasound on nitrogen oxide and dioxide atmosphere in nitric acid solutions. Ultrason. Sonochem. 2001, 8, 175–181; https://doi.org/10.1016/s1350-4177(01)00075-x.Search in Google Scholar

36. Virot, M., Venault, L., Moisy, P., Nikitenko, S. I. Sonochemical redox reactions of Pu(III) and Pu(IV) in aqueous nitric solutions. Dalton Trans. 2015, 44, 2567–2574; https://doi.org/10.1039/c4dt02330g.Search in Google Scholar PubMed

37. Nikonov, M. V., Shilov, V. P. Redox reactions of uranium and plutonium under the effect of ultrasound. Radiochimiya 1990, 32, 480–483.Search in Google Scholar

38. Toraishi, T., Kimura, T., Arisaka, M. A remote valency control technique: catalytic reduction of uranium(vi) to uranium(iv) by external ultrasound irradiation. Chem. Commun. 2007, 240–241; https://doi.org/10.1039/b611573j.Search in Google Scholar PubMed

39. Toraishi, T., Kimura, T., Arisaka, M. Toward innovative actinide separation processes: sequential reduction scheme of uranium, neptunium, and plutonium in 3 M HNO3 by external ultrasound irradiation. J. Nucl. Sci. Technol. 2007, 44, 1220–1226; https://doi.org/10.1080/18811248.2007.9711365.Search in Google Scholar

40. Nikitenko, S. I., Moisy, P., Madic, C. Sonochemical oxidation of Np(V) in aqueous nitric acid medium and sonochemical extraction of Np in two-phase TBP (30 vol%)-n-dodecane/HNO3/H2O system. Radiochim. Acta 1999, 86, 23–31.10.1524/ract.1999.86.12.23Search in Google Scholar

41. Venault, L., Moisy, P., Nikitenko, S. I., Madic, C. Some Sonochemical Reactions of Np(IV) and Pu(IV) in Acidic Media 11th Meeting of the European Society of Sonochemistry, La Grande Motte, France, June, 1–5th; La Grande Motte: France.Search in Google Scholar

42. Nikonov, M. V., Shilov, V. P. Certain sonochemical reactions of Np(IV) and Pu(IV) in acidic media. Sov. Radiochem. 1990, 32, 600–601.Search in Google Scholar

43. Nikonov, M. V., Shilov, V. P. Effect of ultrasound on reduction of Pu(IV) by hydrazine and hydroxylamine in nitric and hydrochloric acids. Sov. Radiochem. 1989, 31, 548–551.Search in Google Scholar

44. Dalodière, E., Virot, M., Dumas, T., Guillaumont, D., Illy, M. C., Berthon, C., Guerin, L., Rossberg, A., Venault, L., Moisy, P., Nikitenko, S. I. Structural and magnetic susceptibility characterization of Pu(V) aqua ion using sonochemistry as a facile synthesis method. Inorg. Chem. Front. 2018, 5, 100–111.10.1039/C7QI00389GSearch in Google Scholar

45. Nikitenko, S. I., Nikonov, M. V., Garnov, A. Y. Kinetics and kinetic isotope effect in pentavalent plutonium disproportionation activated by power ultrasound. J. Radioanal. Nucl. Chem. 1995, 191, 361–367; https://doi.org/10.1007/bf02038232.Search in Google Scholar

46. Nikonov, M. V., Shilov, V. P., Krot, N. N. Effect of ultrasound on redox reactions of americium in aqueous solutions. Sov. Radiochem. 1989, 31, 545–548.Search in Google Scholar

47. Dular, M., Osterman, A. Pit clustering in cavitation erosion. Wear 2008, 265, 811–820; https://doi.org/10.1016/j.wear.2008.01.005.Search in Google Scholar

48. Virot, M., Chave, T., Nikitenko, S. I., Shchukin, D. G., Zemb, T., Mohwald, H. Acoustic cavitation at the water-glass interface. J. Phys. Chem. C 2010, 114, 13083–13091; https://doi.org/10.1021/jp1046276.Search in Google Scholar

49. Virot, M., Pflieger, R., Skorb, E. V., Ravaux, J., Zemb, T., Mohwald, H. Crystalline silicon under acoustic cavitation: from mechanoluminescence to amorphization. J. Phys. Chem. C 2012, 116, 15493–15499; https://doi.org/10.1021/jp305375r.Search in Google Scholar

50. Pecha, R., Microimplosions, Gompf. B. Cavitation collapse and shock wave emission on a nanosecond time scale. Phys. Rev. Lett. 2000, 84, 1328–1330; https://doi.org/10.1103/physrevlett.84.1328.Search in Google Scholar

51. Franc, J. P., Michel, J. M. Fundamentals of Cavitation, Vol. XXII; Springer: Dordrecht, Germany, 2005; p 306.10.1007/1-4020-2233-6Search in Google Scholar

52. Anantharaman, K., Shivakumar, V., Saha, D. Utilisation of thorium in reactors. J. Nucl. Mater. 2008, 383, 119–121; https://doi.org/10.1016/j.jnucmat.2008.08.042.Search in Google Scholar

53. Simonnet, M. Dissolution de l’oxyde de thorium : cinétique et mécanisme, Vol. XI; Université Paris Sud: Paris, 2015.Search in Google Scholar

54. Morosini, V., Chave, T., Virot, M., Moisy, P., Nikitenko, S. I. Sonochemical water splitting in the presence of powdered metal oxides. Ultrason. Sonochem. 2016, 29, 512–516; https://doi.org/10.1016/j.ultsonch.2015.11.006.Search in Google Scholar PubMed

55. Bonato, L., Virot, M., Le Goff, X., Moisy, P., Nikitenko, S. I. Sonochemical dissolution of nanoscale ThO2 and partial conversion into a thorium peroxo sulfate. Ultrason. Sonochem. 2020, 69, 105235; https://doi.org/10.1016/j.ultsonch.2020.105235.Search in Google Scholar PubMed

56. Bonato, L., Virot, M., Dumas, T., Mesbah, A., Lecante, P., Prieur, D., Le Goff, X., Hennig, C., Dacheux, N., Moisy, P., Nikitenko, S. I. Deciphering the crystal structure of a scarce 1D polymeric thorium peroxo sulfate. Chem. Eur J. 2019, 25, 9580–9585; https://doi.org/10.1002/chem.201901426.Search in Google Scholar PubMed

57. Nikonov, M. V., Panfilova, S. E., Shilov, V. P., Shirokova, I. B. Effect of ultrasonic treatment on dissolution of nuclear fuel based on U-Al-Si alloy. Radiochemistry 1998, 40, 230–231.Search in Google Scholar

58. Nguyen, T. V., Nguyen, T. P. H., Le, H. C. The effects of hydrogen peroxide solution and ultrasound on the dissolution of electrodeposited uranium oxide. J. Radioanal. Nucl. Chem. 2019, 319, 1321–1329; https://doi.org/10.1007/s10967-018-6271-9.Search in Google Scholar

59. Virot, M., Szenknect, S., Chave, T., Dacheux, N., Moisy, P., Nikitenko, S. I. Uranium carbide dissolution in nitric solution: sonication vs. silent conditions. J. Nucl. Mater. 2013, 441, 421–430; https://doi.org/10.1016/j.jnucmat.2013.06.021.Search in Google Scholar

60. Samsonov, M. D., Trofimov, T. I., Vinokurov, S. E., Lee, S. C., Myasoedov, B. F., Wai, C. M. Dissolution of actinide oxides in supercritical fluid carbon dioxide containing various organic ligands. J. Nucl. Sci. Technol. 2002, 39, 263–266; https://doi.org/10.1080/00223131.2002.10875458.Search in Google Scholar

61. Trofimov, T. I., Samsonov, M. D., Lee, S. C., Smart, N. G., Wai, C. M. Ultrasound enhancement of dissolution kinetics of uranium oxides in supercritical carbon dioxide. J. Chem. Technol. Biotechnol. 2001, 76, 1223–1226; https://doi.org/10.1002/jctb.509.Search in Google Scholar

62. Enokida, Y., El-Fatah, S. A., Wai, C. M. Ultrasound-enhanced dissolution of UO2 in supercritical CO2 containing a CO2-philic complexant of tri-n-butylphosphate and nitric acid. Ind. Eng. Chem. Res. 2002, 41, 2282–2286; https://doi.org/10.1021/ie010761q.Search in Google Scholar

63. Kalsi, P. K., Tomar, B. S., Ramakumar, K. L., Venugopal, V. Studies on recovery of uranium from fluoride matrix employing sonochemistry. J. Radioanal. Nucl. Chem. 2012, 293, 863–867; https://doi.org/10.1007/s10967-012-1767-1.Search in Google Scholar

64. Avvaru, B., Roy, S. B., Chowdhury, S., Hareendran, K. N., Pandit, A. B. Enhancement of the leaching rate of uranium in the presence of ultrasound. Ind. Eng. Chem. Res. 2006, 45, 7639–7648; https://doi.org/10.1021/ie060599x.Search in Google Scholar

65. Lahiri, S., Bhardwaj, R. L., Mandal, D., Gogate, P. R. Intensified dissolution of uranium from graphite substrate using ultrasound. Ultrason. Sonochem. 2020, 65, 105066; https://doi.org/10.1016/j.ultsonch.2020.105066.Search in Google Scholar PubMed

66. Lahiri, S., Mishra, A., Mandal, D., Bhardwaj, R. L., Gogate, P. R. Sonochemical recovery of uranium from nanosilica-based sorbent and its biohybrid. Ultrason. Sonochem. 2021, 76, 105667; https://doi.org/10.1016/j.ultsonch.2021.105667.Search in Google Scholar PubMed PubMed Central

67. Mason, T. J. Ultrasonic cleaning: an historical perspective. Ultrason. Sonochem. 2016, 29, 519–523; https://doi.org/10.1016/j.ultsonch.2015.05.004.Search in Google Scholar PubMed

68. Kondoh, K., Fujita, C., Sakai, H. Ultrasonic Cleaning of Fuel Assemblies; Medium X: USA, 1994; pp 787–791.Search in Google Scholar

69. Kumar, A., Bhatt, R. B., Behere, P. G., Afzal, M. Ultrasonic decontamination of prototype fast breeder reactor fuel pins. Ultrasonics 2014, 54, 1052–1056; https://doi.org/10.1016/j.ultras.2013.12.008.Search in Google Scholar PubMed

70. Lebedev, O., Lebedev, N., Gavrilov, Y., Doilnitsyn, V., Akatov, A. In: development and application of the ultrasonic technologies in nuclear engineering. In Proc. III International Scientific-Technical Conference “Innovations”, Paris, France, 2017, pp. 128–132.Search in Google Scholar

71. Moser, T., Carr, T. Pressurized Water Reactor Fuel Cleaning Using Advanced Ultrasonics; EPRI, Palo. Alto, CA, and AmerenUE: Fulton, 2000; p. 1001052.Search in Google Scholar

72. Ji, R., Virot, M., Pflieger, R., Nikitenko, S. I. Sonochemical decontamination of magnesium and magnesium-zirconium alloys in mild conditions. J. Hazard Mater. 2021, 406, 124734; https://doi.org/10.1016/j.jhazmat.2020.124734.Search in Google Scholar PubMed

73. Ji, R., Virot, M., Pflieger, R., Podor, R., Le Goff, X., Nikitenko, S. I. Controlled “golf ball shape” structuring of Mg surface under acoustic cavitation. Ultrason. Sonochem. 2018, 40, 30–40; https://doi.org/10.1016/j.ultsonch.2017.06.018.Search in Google Scholar PubMed

74. Nikonov, M. V., Kuranov, K. V., Shilov, V. P. Sonochemical method for the preparation of neptunium(VII). Biol. Bull. Acad. Sci. USSR 1988, 37, 615; https://doi.org/10.1007/bf00965395.Search in Google Scholar

75. Nikonov, M. V., Shilov, V. P. Sonochemical dissolution of NpO2 and PuO2 in aqueous basic media. Sov. Radiochem. 1990, 32, 602.Search in Google Scholar

76. Polyakov, A. S., Zakharkin, B. S., Rorisov, L. M., Kucherenko, V. S., Revjakin, V. V., Bourges, J., Boesch, A., Capelle, P., Bercegol, H., Brossard, P., Bros, P., Sicard, B., Bernard, H. Aida/MOX: Progress Report on the Research Concerning the Aqueous Processes for Allied Plutonium Conversion to PuO2 or (UPu)O2; Edition ANS: France, 1995.Search in Google Scholar

77. Moisy, P., Nikitenko, S. I., Venault, L., Madic, C. Sonochemical dissolution of metallic plutonium in a mixture of nitric and formic acid. Radiochim. Acta 1996, 75, 219–225; https://doi.org/10.1524/ract.1996.75.4.219.Search in Google Scholar

78. Sinkov, S. I., Lumetta, G. J. Sonochemical Digestion of High-Fired Plutonium Dioxide Samples, Report PNNL-16035; Richland, USA, 2006.10.2172/893670Search in Google Scholar

79. Juillet, F., Adnet, J. M., Gasgnier, M. Ultrasound effects on the dissolution of refractory oxides (CeO2 and PuO2) in nitric acid. J. Radioanal. Nucl. Chem. 1997, 224, 137–143; https://doi.org/10.1007/bf02034626.Search in Google Scholar

80. Beaudoux, X., Virot, M., Chave, T., Leturcq, G., Jouan, G., Venault, L., Moisy, P., Nikitenko, S. I. Ultrasound-assisted reductive dissolution of CeO2 and PuO2 in the presence of Ti particles. Dalton Trans. 2016, 45, 8802–8815; https://doi.org/10.1039/c5dt04931h.Search in Google Scholar

81. Kalmykov, S. N., Denecke, M. A. Actinide Nanoparticle Research, 1st ed.; Springer Berlin Heidelberg: Germany, 2011.10.1007/978-3-642-11432-8Search in Google Scholar

82. Xu, H., Zeiger, B. W., Suslick, K. S. Sonochemical synthesis of nanomaterials. Chem. Soc. Rev. 2013, 42, 2555–2567; https://doi.org/10.1039/c2cs35282f.Search in Google Scholar

83. Nikitenko, S. I., Moisy, P., Blanc, P., Madic, C. Sonolysis of actinide(IV) beta-diketonates in alkanes. Compt. Rendus Chem. 2004, 7, 1191–1199; https://doi.org/10.1016/j.crci.2004.02.020.Search in Google Scholar

84. Nikitenko, S. I., Moisy, P., Seliverstov, A. F., Blanc, P., Madic, C. Sonolysis of metal beta-diketonates in alkanes. Ultrason. Sonochem. 2003, 10, 95–102; https://doi.org/10.1016/s1350-4177(02)00138-4.Search in Google Scholar

85. Nikitenko, S. I., Moisy, P., Tcharushnikova, I. A., Blanc, P., Madic, C. Volatile metal beta-diketonates – new precursors for the sonochemical synthesis of nanosized materials – sonolysis of thorium(IV) beta-diketonates. Ultrason. Sonochem. 2000, 7, 177–182; https://doi.org/10.1016/s1350-4177(00)00056-0.Search in Google Scholar

86. Batuk, O. N., Szabo, D. V., Denecke, M. A., Vitova, T., Kalmykov, S. N. Synthesis and characterization of thorium, uranium and cerium oxide nanoparticles. Radiochim. Acta 2013, 101, 233–239; https://doi.org/10.1524/ract.2012.2014.Search in Google Scholar

87. Sargazi, G., Afzali, D., Mostafavi, A. A Novel synthesis of a new thorium (IV) metal organic framework nanostructure with well controllable procedure through ultrasound assisted reverse micelle method. Ultrason. Sonochem. 2018, 41, 234–251; https://doi.org/10.1016/j.ultsonch.2017.09.046.Search in Google Scholar PubMed

88. Dalodiere, E., Virot, M., Morosini, V., Chave, T., Dumas, T., Hennig, C., Wiss, T., Blanco, O. D., Shuh, D. K., Tyliszcak, T., Venault, L., Moisy, P., Nikitenko, S. I. Insights into the sonochemical synthesis and properties of salt-free intrinsic plutonium colloids. Sci. Rep. 2017, 7, 43514; https://doi.org/10.1038/srep43514.Search in Google Scholar PubMed PubMed Central

89. Triay, I. R., Hobart, D. E., Mitchell, A. J., Newton, T. W., Ott, M. A., Palmer, P. D., Rundberg, R. S., Thompson, J. L. Size determinations of plutonium colloids using autocorrelation photon spectroscopy. Radiochim. Acta 1991, 52–3, 127–131; https://doi.org/10.1524/ract.1991.5253.1.127.Search in Google Scholar

90. Bonato, L., Virot, M., Dumas, T., Mesbah, A., Dalodiere, E., Blanco, O. D., Wiss, T., Le Goff, X., Odorico, M., Prieur, D., Rossberg, A., Venault, L., Dacheux, N., Moisy, P., Nikitenko, S. I. Probing the local structure of nanoscale actinide oxides: a comparison between PuO2 and ThO2 nanoparticles rules out PuO2+x hypothesis. Nanoscale Adv. 2020, 2, 214–224; https://doi.org/10.1039/c9na00662a.Search in Google Scholar PubMed PubMed Central

91. Micheau, C., Virot, M., Dourdain, S., Dumas, T., Menut, D., Solari, P. L., Venault, L., Diat, O., Moisy, P., Nikitenko, S. I. Relevance of formation conditions to the size, morphology and local structure of intrinsic plutonium colloids. Environ. Sci. Nano 2020, 7, 2252–2266; https://doi.org/10.1039/d0en00457j.Search in Google Scholar

92. Cot-Auriol, M., Virot, M., Micheau, C., Dumas, T., Le Goff, X., Den Auwer, C., Diat, O., Moisy, P., Nikitenko, S. I. Ultrasonically assisted conversion of uranium trioxide into uranium(vi) intrinsic colloids. Dalton Trans. 2021, 50, 11498–11511; https://doi.org/10.1039/d1dt01609a.Search in Google Scholar PubMed

93. Cardone, F., Mignani, R., Petrucci, A. Piezonuclear decay of thorium. Phys. Lett. A 2009, 373, 1956–1958; https://doi.org/10.1016/j.physleta.2009.03.067.Search in Google Scholar

94. Aupiais, J., Cousin, V., Nikitenko, S. I., Pflieger, R., Moisy, P. Absence of Th-232,Th-230,Th-228 enhancement decay by ultrasound exposure. Radiochim. Acta 2013, 101, 279–283; https://doi.org/10.1524/ract.2013.2028.Search in Google Scholar

95. Ford, R., Gerbier-Violleau, M., Vazquez-Jauregui, E. Measurement of the thorium-228 activity in solutions cavitated by ultrasonic sound. Phys. Lett. A 2010, 374, 701–703; https://doi.org/10.1016/j.physleta.2009.11.061.Search in Google Scholar

96. Mason, C. A., Hubley, N. T., Robertson, J. D., Wegge, D. L., Brockman, J. D. Sonication assisted dissolution of post-detonation nuclear debris using ammonium bifluoride. Radiochim. Acta 2017, 105, 1059–1070; https://doi.org/10.1515/ract-2017-2802.Search in Google Scholar

97. Chave, T., Le Goff, X., Scheinost, A. C., Nikitenko, S. I. Insights into the structure and thermal stability of uranyl aluminate nanoparticles. New J. Chem. 2017, 41, 1160–1167; https://doi.org/10.1039/c6nj02948e.Search in Google Scholar

98. Chave, T., Nikitenko, S. I., Scheinost, A. C., Berthon, C., Arab-Chapelet, B., Moisy, P. First synthesis of uranyl aluminate nanoparticles. Inorg. Chem. 2010, 49, 6381–6383; https://doi.org/10.1021/ic100597m.Search in Google Scholar

99. Panturu, E., Jinescu, G., Radulescu, R., Olteanu, A. F., Jinescu, C. The chemical decontamination process intensification using ultrasounds. Rev. Chim. (Bucharest) 2008, 59, 1036–1040.10.37358/RC.08.9.1964Search in Google Scholar

100. Radu, A. D., Woinaroschy, A., Panturu, E. Uranium extraction in ultrasound field from contaminated soils. Rev. Chim. (Bucharest) 2014, 65, 470–474.Search in Google Scholar

101. Radu, D. A., Isopescu, R., Panturu, E., Woinaroschy, A. Optimization of uranium soil decontamination in alkaline washing using mechanical stirring and ultrasound field. Environ. Sci. Pollut. Res. 2020, 27, 5941–5950; https://doi.org/10.1007/s11356-019-07063-0.Search in Google Scholar

102. Doroshenko, I., Zurkova, J., Moravec, Z., Bezdicka, P., Pinkas, J. Sonochemical precipitation of amorphous uranium phosphates from trialkyl phosphate solutions and their thermal conversion to UP2O7. Ultrason. Sonochem. 2015, 26, 157–162; https://doi.org/10.1016/j.ultsonch.2015.01.016.Search in Google Scholar

103. Paik, S., Satpati, S. K., Gupta, S. K., Sahu, M. L., Singh, D. K. Study on the effects of sonication on reactive precipitation of ammonium uranyl carbonate from pure uranyl nitrate solution. J. Nucl. Mater., 2021, 557.10.1016/j.jnucmat.2021.153222Search in Google Scholar

104. Khorshidi, N., Niazi, A. Moving window partial least squares after orthogonal signal correction as a coupling method for determination of uranium and thorium by ultrasound-assisted emulsification microextraction. J. Chemom. 2019, 33, e3083; https://doi.org/10.1002/cem.3083.Search in Google Scholar

105. Oktay, E., Yayli, A. Physical properties of thorium oxalate powders and their influence on the thermal decomposition. J. Nucl. Mater. 2001, 288, 76–82; https://doi.org/10.1016/s0022-3115(00)00571-7.Search in Google Scholar

106. Paik, S., Satpati, S. K., Singh, D. K. A novel approach of precipitation of Ammonium Di-Uranate (ADU) by sonochemical route. Prog. Nucl. Energy 2022, 143, 104034; https://doi.org/10.1016/j.pnucene.2021.104034.Search in Google Scholar

107. Narasimha Murty, B., Balakrishna, P., Yadav, R. B., Ganguly, C. Influence of temperature of precipitation on agglomeration and other powder characteristics of ammonium diuranate. Powder Technol. 2001, 115, 167–183; https://doi.org/10.1016/s0032-5910(00)00336-3.Search in Google Scholar

108. Stuart, W. I., Miller, D. J. The nature of ammonium uranates. J. Inorg. Nucl. Chem. 1973, 35, 2109–2111; https://doi.org/10.1016/0022-1902(73)80163-0.Search in Google Scholar

Received: 2021-12-24
Accepted: 2022-03-30
Published Online: 2022-04-15
Published in Print: 2022-06-27

© 2022 Walter de Gruyter GmbH, Berlin/Boston

Articles in the same Issue

  1. Frontmatter
  2. Editorial: Diamond Jubilee Issue
  3. Sixty years of Radiochimica Acta: a brief overview with emphasis on the last 10 years
  4. A. Chemistry of Radioelements
  5. Five decades of GSI superheavy element discoveries and chemical investigation
  6. Chemistry of the elements at the end of the actinide series using their low-energy ion-beams
  7. Sonochemistry of actinides: from ions to nanoparticles and beyond
  8. Theoretical insights into the reduction mechanism of neptunyl nitrate by hydrazine derivatives
  9. The speciation of protactinium since its discovery: a nightmare or a path of resilience
  10. On the volatility of protactinium in chlorinating and brominating gas media
  11. The aqueous chemistry of radium
  12. B. Energy Related Radiochemistry
  13. Selective actinide(III) separation using 2,6-bis[1-(propan-1-ol)-1,2,3-triazol-4-yl]pyridine (PyTri-Diol) in the innovative-SANEX process: laboratory scale counter current centrifugal contactor demonstration
  14. Fate of Neptunium in nuclear fuel cycle streams: state-of-the art on separation strategies
  15. Uranium adsorption – a review of progress from qualitative understanding to advanced model development
  16. Targeted synthesis of carbon-supported titanate nanofibers as host structure for nuclear waste immobilization
  17. Progress of energy-related radiochemistry and radionuclide production in the Republic of Korea
  18. C. Nuclear Data
  19. How accurate are half-life data of long-lived radionuclides?
  20. Status of the decay data for medical radionuclides: existing and potential diagnostic γ emitters, diagnostic β+ emitters and therapeutic radioisotopes
  21. An overview of nuclear data standardisation work for accelerator-based production of medical radionuclides in Pakistan
  22. An overview of activation cross-section measurements of some neutron and charged-particle induced reactions in Bangladesh
  23. Nuclear reaction data for medical and industrial applications: recent contributions by Egyptian cyclotron group
  24. Nuclear data for light charged particle induced production of emerging medical radionuclides
  25. D. Radionuclides and Radiopharmaceuticals
  26. The role of chemistry in accelerator-based production and separation of radionuclides as basis for radiolabelled compounds for medical applications
  27. Production of neutron deficient rare earth radionuclides by heavy ion activation
  28. Evaluation of 186WS2 target material for production of high specific activity 186Re via proton irradiation: separation, radiolabeling and recovery/recycling
  29. Special radionuclide production activities – recent developments at QST and throughout Japan
  30. China’s radiopharmaceuticals on expressway: 2014–2021
  31. E. Environmental Radioactivity
  32. A summary of environmental radioactivity research studies by members of the Japan Society of Nuclear and Radiochemical Sciences
Downloaded on 3.12.2025 from https://www.degruyterbrill.com/document/doi/10.1515/ract-2021-1142/html
Scroll to top button