Abstract
The TRIGA Mark II-reactor at the Johannes Gutenberg University Mainz (JGU) is one of three research reactors in Germany. The TRIGA Mainz became first critical on August 3rd, 1965. It can be operated in the steady state mode with a maximum power of 100 kWth and in the pulse mode with a peak power of 250 MWth and a pulse length of 30 ms. The TRIGA Mainz is equipped with a central thimble, a rotary specimen rack, three pneumatic transfer systems, four beam tubes, and a graphite thermal column. The TRIGA Mainz is intensively used both for basic and applied research in nuclear chemistry and nuclear physics. Two sources for ultra-cold neutrons (UCN) are operational at two beam ports. At a third beam port a Penning-Trap for highly precise mass measurements of exotic nuclides is installed. Education and training is another main field of activity. Here, various courses in nuclear and radiochemistry, reactor operation and reactor physics are held for scientists, advanced students, engineers, and technicians utilizing the TRIGA Mainz reactor.
Dedicated to the memory of Professor Günter Herrmann.
References
1. Dyson, F.: The little red schoolhouse. In: Disturbing the Universe, Basic Books, New York (1979), p. 94.Search in Google Scholar
2. Koutz, S. L., Taylor, T., McReynolds, A. W., Dyson, F., Stone, R. S., Sleeper, H. B., Duffield, R. B.: Design of a 10 kW reactor for isotope production, research and training purposes. In: Proc. 2nd U.N. Int. Conf. Peaceful Uses of Atomic Energy, Vol. 10 (1958), United Nations (Ed.), Geneva, p. 282.Search in Google Scholar
3. Stone, R. S., Sleeper, H. P., Stahl, R. A., West, G.: Transient behaviour of TRIGA, a zirconium-hydride, water – moderated reactor. Nucl. Sci. Eng. 6, 255 (1959).10.13182/NSE59-A28840Search in Google Scholar
4. Merten, U., Dijkstra, L. J., Zimmermann, F. D., Hatcher, A. P., LaGrange, L. D.: The preparation and properties of zirconium-uranium-hydrogen alloys. In: Proc. 2nd U.N. Int. Conf. Peaceful Uses of Atomic Energy, Vol. 6 (1958), United Nations (Ed.), Geneva, p. 111.Search in Google Scholar
5. McReynolds, A. W., Nelkin, M. S., Rosenbluth, M. N., Whittemore, W. L.: Neutron thermalization by chemically-bound hydrogen and carbon. In: Proc. 2nd U.N. Int. Conf. Peaceful Uses of Atomic Energy, Vol. 16 (1958), United Nations (Ed.), Geneva, p. 297.Search in Google Scholar
6. Eberhardt, K., Trautmann, N.: Neutron activation analysis at the TRIGA Mark II research reactor of the University of Mainz. In: IAEA Technical Reports Series 455, 537 (2007).Search in Google Scholar
7. Stender, E., Herrmann, G., Trautmann, N.: Use of alkali halide clusters in a gas-jet recoil transport system. Radiochem. Radioanal. Lett. 42, 291 (1980).Search in Google Scholar
8. Eibach, M., Beyer, T., Blaum, K., Block, M., Eberhardt, K., Herfurth, F., Geppert, C., Ketelaer, J., Ketter, J., Krämer, J., Krieger, A., Knuth, K., Nagy, Sz., Nörtershäuser, W., Smorra, C.: Transport of fission products with a helium gas-jet at TRIGA-SPEC. Nucl. Instrum. Methods A613, 226 (2010).10.1016/j.nima.2009.11.034Search in Google Scholar
9. Menke, H., Trautmann, N., Krebs, W. J.: Irradiations by means of reactor pulses. Kerntechnik 17, 281 (1975).Search in Google Scholar
10. Herrmann, G., Trautmann, N.: Rapid chemical methods for identification and study of short-lived nuclides. Annu. Rev. Nucl. Part. Sci. 32, 117 (1982).10.1146/annurev.ns.32.120182.001001Search in Google Scholar
11. Türler, A., Gregorich, K. E.: Experimental techniques. In: M. Schädel, D. Shaughnessy (Eds.), The Chemistry of Superheavy Elements (2014), 2nd ed., Springer, Heidelberg, p. 261.10.1007/978-3-642-37466-1_5Search in Google Scholar
12. Altzitouglou, T., Rogowski, J., Skålberg, M., Alstad, J., Herrmann, G., Kaffrell, N., Skarnemark, G., Talbert, W., Trautmann, N.: Fast chemical separation of technetium from fission products and decay studies of 109Tc and 110Tc. Radiochim. Acta 51, 145 (1990).10.1524/ract.1990.51.4.145Search in Google Scholar
13. Schoedder, S., Lhersonneau, G., Wöhr, A., Skarnemark, G., Alstad, J., Nähler, A., Eberhardt, K., Äystö, J., Trautmann, N., Kratz, K.-L.: Level lifetimes in neutron rich Ru isotopes. Z. Phys. A352, 237 (1995).10.1007/BF01289492Search in Google Scholar
14. Lhersonneau, G., Pfeiffer, B., Alstad, J., Dendooven, P., Eberhardt, K., Hankonen, S., Klöckl, I., Kratz, K.-L., Malmbeck, R., Omtvedt, J. P., Penttila, H., Schoedder, S., Skarnemark, G., Trautmann, N., Aystö, J.: Shape coexistence near the double-midshell nucleus 111Rh. Eur. Phys. J. A1, 285 (1998).10.1007/s100500050063Search in Google Scholar
15. Persson, H., Skarnemark, G., Skålberg, M., Alstad, J., Liljenzin, J. O., Bauer, G., Haberberger, F., Kaffrell, N., Rogowski, J., Trautmann, N.: SISAK 3 – an improved system for rapid radiochemical separations by solvent extraction. Radiochim. Acta 48, 177 (1989).10.1524/ract.1989.48.34.177Search in Google Scholar
16. Alstad, J., Skarnemark, G., Haberberger, F., Herrmann, G., Nähler, A., Pense-Maskow, M., Trautmann, N.: Development of new centrifuges for fast solvent extraction of transactinide elements. J. Radioanal. Nucl. Chem. 189, 133 (1995).10.1007/BF02040191Search in Google Scholar
17. Kratz, J. V.: Development of nuclear chemistry at Mainz and Darmstadt. Radiochim. Acta 107, 1 (2019).10.1515/ract-2018-2948Search in Google Scholar
18. Hild, D., Eberhardt, K., Even, J., Kratz, J. V., Wiehl, N., Löb, P., Werner, B., Hofmann, C.: MicroSISAK: continuous liquid-liquid extractions of radionuclides at ≥0.2 mL/min. Radiochim. Acta 101, 681 (2013).10.1524/ract.2013.2080Search in Google Scholar
19. Frei, A., Sobolev, Yu., Altarev, I., Eberhardt, K., Gschrey, A., Gutsmiedl, E., Hackl, R., Hampel, G., Hartmann, F. J., Heil, W., Kratz, J. V., Lauer, T. H., Lizon Aguilar, A., Mäller, A. R., Paul, S., Pokotilovski, Y. U., Schmid, W., Tassini, L., Tortorella, D., Trautmann, N., Trinks, U., Wiehl, N.: First production of ultracold neutrons with a solid deuterium source at the pulsed reactor TRIGA Mainz. Eur. Phys. J. A34, 119 (2007).10.1140/epja/i2007-10494-2Search in Google Scholar
20. Karch, J., Sobolev, Yu., Beck, M., Eberhardt, K., Hampel, G., Heil, W., Kieser, R., Reich, T., Trautmann, N., Ziegner, M.: Performance of the solid deuterium ultra-cold neutron source at the pulsed reactor TRIGA Mainz. Eur. Phys. J. A50, 78 (2014).10.1140/epja/i2014-14078-9Search in Google Scholar
21. Lauss, B., Bison, G., Daum, M., Ries, D., Schmidt-Wellenburg, P., Zsigmund, G., Brenner, T., Geltenbort, P., Jenke, T., Zimmer, O., Beck, M., Heil, W., Kahlenberg, J., Karch, J., Ross, K., Eberhardt, K., Geppert, C., Karpuk, S., Reich, T., Siemensen, C., Sobolev, Yu., Trautmann, N.: Comparison of ultracold neutron sources for fundamental physics measurements. Phys. Rev. C95, 045503 (2017).10.1103/PhysRevC.95.045503Search in Google Scholar
22. Kahlenberg, J., Ries, D., Ross, K. U., Siemensen, C., Beck, M., Geppert, C., Heil, W., Hild, N., Karch, J., Karpuk, S., Kories, F., Kretschmer, M., Lauss, B., Reich, T., Sobolev, Yu., Trautmann, N.: Upgrade of the ultracold neutron source at the pulsed reactor TRIGA Mainz. Eur. Phys. J. A53, 226 (2017).10.1140/epja/i2017-12428-9Search in Google Scholar
23. Ketelaer, J., Krämer, J., Beck, D., Blaum, K., Block, M., Eberhardt, K., Eitel, G., Ferrer, J., Geppert, C., George, S., Herfurth, F., Ketter, J., Nagy, Sz., Neidherr, D., Neugart, R., Nörtershäuser, W., Repp, J., Smorra, C., Trautmann, N., Weber, C.: TRIGA-SPEC: a setup for mass spectrometry and laser spectroscopy at the research reactor TRIGA Mainz. Nucl. Instr. Meth. A594, 162 (2008).10.1016/j.nima.2008.06.023Search in Google Scholar
24. Grund, J., Düllmann, Ch. E., Eberhardt, K., Nagy, Sz., van der Laar, J., Renisch, D., Schneider, F.: Implementation of an aerodynamic lens for TRIGA-SPEC. Nucl. Instrum. Meth. Phys. Res. B376, 225 (2016).10.1016/j.nimb.2015.12.017Search in Google Scholar
25. Eibach, M., Beyer, T., Blaum, K., Block, M., Düllmann, Ch. E., Eberhardt, K., Grund, J., Nagy, Sz., Nitsche, H., Nörtershäuser, W., Renisch, D., Rykaczewski, K. P., Schneider, F., Smorra, C., Vieten, J., Wang, M., Wendt, K.: Direct high-precision mass measurements on Am-241, Am-243, Pu-244, and Cf-249. Phys. Rev. C89, 064318 (2014).10.1103/PhysRevC.89.064318Search in Google Scholar
26. Mauerhofer, E.: Improvement in the counting statistics and in the limit of detection with Compton suppression spectrometers – a contribution to instrumental neutron activation analysis. Appl. Rad. Isotopes 47, 649 (1996).10.1016/0969-8043(96)00026-7Search in Google Scholar
27. Eberhardt, K., Trautmann, N.: Neutron activation analysis at the TRIGA Mark II research reactor of the University of Mainz. In: Utilization Related Design Features of Research Reactors – A Compendium, International Atomic Energy Agency Technical Report Series No. 455, Vienna (2007).Search in Google Scholar
28. Hampel, J., Boldt, F. M., Gerstenberg, H., Hampel, G., Kratz, J. V., Reber, N., Wiehl, N.: Fast determination of impurities in metallurgical grade silicon for photovoltaics by instrumental neutron activation analysis. Appl. Rad. Isotopes 69, 1365 (2011).10.1016/j.apradiso.2011.05.024Search in Google Scholar PubMed
29. Conejos-Sanchez, I., Hampel, G., Zauner, S., Riederer, J.: Reverse paintings on glass – a new approach for dating and localization. Appl. Rad. Isotopes 67, 2113 (2009).10.1016/j.apradiso.2009.04.020Search in Google Scholar PubMed
30. Stieghorst, C., Hampel, G., Zauner, S., Plonka-Spehr, C.: Archäometrie mittels instrumenteller Neutronenaktivierungsanalyse am Forschungsreaktor TRIGA Mainz. METALLA, Sonderheft 5: Archäometrie und Denkmalpflege (2012).Search in Google Scholar
31. Gerick, D.: Studies of the non-ionizing radiation hardness and temperature dependence of silicon photomultipliers for the LHCb Tracker upgrade. Master thesis, University of Heidelberg (2014).Search in Google Scholar
32. Heftrich, T., Bichler, M., Dressler, R., Eberhardt, K., Endres, A., Glorius, J., Göbel, K., Hampel, G., Heftrich, M., Käppeler, F., Lederer, C., Mikorski, M., Plag, R., Reifarth, R., Stieghorst, C., Schmidt, S., Schumann, D., Slavkovská, Z., Sonnabend, K., Wallner, A., Weigand, M., Wiehl, N., Zauner, S.: Thermal neutron capture cross section of the radioactive isotope 60Fe. Phys. Rev. C92, 015806 (2015).10.1103/PhysRevC.92.015806Search in Google Scholar
33. Weigand, M., Heftrich, T., Düllmann, Ch. E., Eberhardt, K., Fiebiger, S., Glorius, J., Göbel, K., Haas, R., Langer, C., Lohse, S., Reifarth, R., Renisch, D., Wolf, C.: 66.7 keV γ-line intensity of 171Tm determined via neutron activation. Phys. Rev. C97, 035803 (2018).10.1103/PhysRevC.97.035803Search in Google Scholar
©2019 Walter de Gruyter GmbH, Berlin/Boston
Articles in the same Issue
- Frontmatter
- Preface
- Günter Herrmann (1925–2017): A tribute to his research and organizational achievements
- The research reactor TRIGA Mainz – a strong and versatile neutron source for science and education
- Copper-catalyzed click reactions: quantification of retained copper using 64Cu-spiked Cu(I), exemplified for CuAAC reactions on liposomes
- Reactions of fission products from a 252Cf source with NO and mixtures of NO and CO in an inert gas
- From SRAFAP to ARCA and AIDA – developments and implementation of automated aqueous-phase rapid chemistry apparatuses for heavy actinides and transactinides
- Production and study of chemical properties of superheavy elements
- Precise ground state properties of the heaviest elements for studies of their atomic and nuclear structure
- Modeling the sorption of Np(V) on Na-montmorillonite – effects of pH, ionic strength and CO2
- Determination of complex formation constants of neptunium(V) with propionate and lactate in 0.5–2.6 m NaCl solutions at 22–60°C using a solvent extraction technique
- Nuclear forensics on uranium fuel pellets
- Recent developments in resonance ionization mass spectrometry for ultra-trace analysis of actinide elements
- Measurement of the laser resonance ionization efficiency for lutetium
Articles in the same Issue
- Frontmatter
- Preface
- Günter Herrmann (1925–2017): A tribute to his research and organizational achievements
- The research reactor TRIGA Mainz – a strong and versatile neutron source for science and education
- Copper-catalyzed click reactions: quantification of retained copper using 64Cu-spiked Cu(I), exemplified for CuAAC reactions on liposomes
- Reactions of fission products from a 252Cf source with NO and mixtures of NO and CO in an inert gas
- From SRAFAP to ARCA and AIDA – developments and implementation of automated aqueous-phase rapid chemistry apparatuses for heavy actinides and transactinides
- Production and study of chemical properties of superheavy elements
- Precise ground state properties of the heaviest elements for studies of their atomic and nuclear structure
- Modeling the sorption of Np(V) on Na-montmorillonite – effects of pH, ionic strength and CO2
- Determination of complex formation constants of neptunium(V) with propionate and lactate in 0.5–2.6 m NaCl solutions at 22–60°C using a solvent extraction technique
- Nuclear forensics on uranium fuel pellets
- Recent developments in resonance ionization mass spectrometry for ultra-trace analysis of actinide elements
- Measurement of the laser resonance ionization efficiency for lutetium