Home Solution blow spinning polysulfone-Aliquat 336 nanofibers: synthesis, characterization, and application for the extraction and preconcentration of losartan from aqueous solutions
Article
Licensed
Unlicensed Requires Authentication

Solution blow spinning polysulfone-Aliquat 336 nanofibers: synthesis, characterization, and application for the extraction and preconcentration of losartan from aqueous solutions

  • Tanese Montesinos-Vázquez , Irma Pérez-Silva ORCID logo , Carlos A. Galán-Vidal ORCID logo , Israel S. Ibarra ORCID logo , José A. Rodríguez ORCID logo and M. Elena Páez-Hernández ORCID logo EMAIL logo
Published/Copyright: August 15, 2022
Become an author with De Gruyter Brill

Abstract

Nanofibers are materials used in a wide range of applications due to their unique physicochemical properties. As an alternative to the most common method of its manufacturing (electrospinning) blow spinning has been used since it has greater production efficiency and simplicity. A wide variety of polymers is used for its preparation and can be modified to improve the interaction and selectivity toward specific analytes. Thereby nanofibers have been used for the extraction or removal of organic compounds such as drugs but there are still few reports of drug extractions like losartan. In this work polysulfone-Aliquat 336 nanofibers were prepared using the blow spinning method to extract and preconcentrate losartan. The studies showed that Aliquat 336 incorporation significantly improve the extraction of losartan with polysulfone fibers. Adsorption process was thermodynamically favorable with an adsorption capacity of 15.45 mg·g−1. Thus, it was possible to extract more than 92% of initial losartan using 10 mg of polysulfone-Aliquat 336 fibers (9 and 3.5% (w/v)), at pH 6 from deionized water and synthetic wastewater. Finally, losartan preconcentration was evaluated to facilitate its quantification using ultraviolet–visible spectrometry (UV-Vis), which allowed the determination of this drug at concentrations below the detection limit.


Corresponding author: M. Elena Páez-Hernández, Laboratorio 2, Área Académica de Química, Universidad Autónoma del Estado de Hidalgo, Carretera Pachuca-Tulancingo Km. 4.5, 42184 Mineral de la Reforma, Hidalgo, Mexico, E-mail:

Funding source: Consejo Nacional de Ciencia y Tecnología

Acknowledgments

IPS, CAGV, ISI, JAR, and MEPH thank the National System of Researchers (SNI) for the distinction awarded.

  1. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: TMV thanks the National Council of Science and Technology (CONACyT) for the scholarship granted to carry out her Master’s studies.

  3. Conflict of interest statement: The authors declare that they have no conflicts of interest regarding this article.

References

1. Hypertension. Fact sheet. World Health Organization. https://www.who.int/news-room/fact-sheets/detail/hypertension (accessed Mar 10, 2022).Search in Google Scholar

2. Informe de Resultados de la Encuesta Nacional de Salud y Nutrición 2020. Instituto Nacional de Salud Pública, México. https://ensanut.insp.mx/encuestas/ensanutcontinua2020/informes.php (accessed Mar 10, 2022).Search in Google Scholar

3. Jeong, S. M., Kim, S., Wook Shin, D., Han, K., Hyun Park, S., Hyuk Kim, S., Kim, Y. H., Kwon, Y. C. Persistence and adherence to antihypertensive drugs in newly treated hypertensive patients according to initial prescription. Eur. J. Prev. Cardiol. 2020, 11, e1–e4. https://doi.org/10.1177/2047487319900326.Search in Google Scholar PubMed

4. Magvanjav, O., Cooper-DeHoff, R. M., McDonough, C. W., Gong, Y., Hogan, W. R., Johnson, J. A. Combination antihypertensive therapy prescribing and blood pressure control in a real-world setting. Am. J. Hypertens. 2020, 33, 316–323. https://doi.org/10.1093/ajh/hpz196.Search in Google Scholar PubMed PubMed Central

5. Swamy, S., Koch, C. A., Hannah-Shmouni, F., Schiffrin, E. L., Klubo-Gwiezdzinska, J., Gubbi, S. Hypertension and COVID-19: updates from the era of vaccines and variants. J. Clin. Transl. Endocrinol. 2022, 27, 100285. https://doi.org/10.1016/j.jcte.2021.100285.Search in Google Scholar PubMed PubMed Central

6. Kornholt, J., Christensen, M. B. Prevalence of polypharmacy in Denmark. Dan. Med. J. 2020, 67, A12190680.Search in Google Scholar

7. Lee, J., Choi, J., Yum, Y., Joo, H. J., Kim, Y. H., An, H., Kim, E. J. Clinical effectiveness and safety of amlodipine/losartan-based single-pill combination therapy in patients with hypertension: findings from real-world, multicenter observational databases. J. Clin. Hypertens. 2021, 23, 1975–1983. https://doi.org/10.1111/jch.14380.Search in Google Scholar PubMed PubMed Central

8. Ukoha-Kalu, B. O., Adibe, M., Ukwe, C. Prescription pattern and factors associated with the control of blood pressure among hypertensive patients receiving care in a Nigerian tertiary hospital. J. Hypertens. 2021, 39, e117. https://doi.org/10.1097/01.hjh.0000745612.13971.5b.Search in Google Scholar

9. Vaduganathan, M., Li, D., Van Meijgaard, J., Warraich, H. J. Prescription filling patterns of evidence-based medical therapies for heart failure during the covid-19 pandemic in the United States. J. Card. Fail. 2021, 27, 1280–1284. https://doi.org/10.1016/j.cardfail.2021.06.013.Search in Google Scholar PubMed PubMed Central

10. Al-Majed, A. R. A., Assiri, E., Khalil, N. Y., Abdel-Aziz, H. A. Losartan: comprehensive profile. Profiles Drug Subst. Excipients Relat. Methodol. 2015, 40, 159–194. https://doi.org/10.1016/bs.podrm.2015.02.003.Search in Google Scholar PubMed

11. Botero-Coy, A. M., Martínez-Pachón, D., Boix, C., Rincón, R. J., Castillo, N., Arias-Marín, L. P., Manrique-Losada, L., Torres-Palma, R., Moncayo-Lasso, A., Hernández, F. An investigation into the occurrence and removal of pharmaceuticals in Colombian wastewater. Sci. Total Environ. 2018, 642, 842–853. https://doi.org/10.1016/j.scitotenv.2018.06.088.Search in Google Scholar PubMed

12. Goswami, P., Guruge, K. S., Tanoue, R., Tamamura, Y. A., Jinadasa, K. B. S. N., Nomiyama, K., Kunisue, T., Tanabe, S. Occurrence of pharmaceutically active compounds and potential ecological risks in wastewater from hospitals and receiving waters in Sri Lanka. Environ. Toxicol. Chem. 2021, 41, 98–311. https://doi.org/10.1002/etc.5212.Search in Google Scholar PubMed

13. Ikonen, J., Nuutinen, I., Niittynen, M., Hokajärvi, A. M., Pitkänen, T., Antikainen, E., Miettinen, I. T. Presence and reduction of anthropogenic substances with UV light and oxidizing disinfectants in wastewater – a case study at Kuopio, Finland. Water 2021, 13, 360. https://doi.org/10.3390/w13030360.Search in Google Scholar

14. Gómez-Canela, C., Edo, S., Rodríguez, N., Gotor, G., Lacorte, S. Comprehensive characterization of 76 pharmaceuticals and metabolites in wastewater by LC-MS/MS. Chemosensors 2021, 9, 273. https://doi.org/10.3390/chemosensors9100273.Search in Google Scholar

15. Björklund, E., Svahn, O. Total release of 21 indicator pharmaceuticals listed by the Swedish medical products agency from wastewater treatment plants to surface water bodies in the 1.3 million populated county Skåne (Scania), Sweden. Molecules 2022, 21, 77.10.3390/molecules27010077Search in Google Scholar PubMed PubMed Central

16. Golovko, O., Rehrl, A. L., Köhler, S., Ahrens, L. Organic micropollutants in water and sediment from Lake Mälaren, Sweden. Chemosphere 2020, 259, 127293. https://doi.org/10.1016/j.chemosphere.2020.127293.Search in Google Scholar PubMed

17. Singh, R., Lai, A., Krier, J., Kondić, T., Diderich, P., Schymanski, E. Occurrence and distribution of pharmaceuticals and their transformation products in Luxembourgish surface waters. ACS Environ. Au 2021, 1, 58–70. https://doi.org/10.1021/acsenvironau.1c00008.Search in Google Scholar

18. Pusceddu, F. H., Guimarães, M. M., Lopes, L. O., Souza, L. S., Cortez, F. S., Pereira, C. D. S., Choueri, R. B., Cesar, A. Biological effects of the antihypertensive losartan under different ocean acidification scenarios. Environ. Pollut. 2022, 292, 118329. https://doi.org/10.1016/j.envpol.2021.118329.Search in Google Scholar PubMed

19. Pereira, D. S., Maranho, L. A., Cortez, F. S., Pusceddu, F. H., Santos, A. R., Ribeiro, D. A., Cesar, A., Guimarães, L. L. Occurrence of pharmaceuticals and cocaine in a Brazilian coastal zone. Sci. Total Environ. 2016, 548, 148–154. https://doi.org/10.1016/j.scitotenv.2016.01.051.Search in Google Scholar PubMed

20. Cortez, F. S., da Silva Souza, L., Guimarães, L. L., Almeida, J. E., Pusceddu, F. H., Maranho, L. A., Mota, L. G., Nobre, C. R., Moreno, B. B., de Souza Abessa, D. M., Cesar, A. Ecotoxicological effects of losartan on the brown mussel Perna perna and its occurrence in seawater from Santos Bay (Brazil). Sci. Total Environ. 2018, 637, 1363–1371. https://doi.org/10.1016/j.scitotenv.2018.05.069.Search in Google Scholar PubMed

21. Roveri, V., Guimarães, L. L., Toma, W., Correia, A. T. Occurrence and ecological risk assessment of pharmaceuticals and cocaine in a beach area of Guarujá, São Paulo State, Brazil, under the influence of urban surface runoff. Environ. Sci. Pollut. Res. 2020, 27, 45063–45075. https://doi.org/10.1007/s11356-020-10316-y.Search in Google Scholar PubMed

22. Roveri, V., Guimarães, L. L., Toma, W., Correia, A. T. Occurrence and risk assessment of pharmaceuticals and cocaine around the coastal submarine sewage outfall in Guarujá, São Paulo State, Brazil. Environ. Sci. Pollut. Res. 2021, 28, 11384–11400. https://doi.org/10.1007/s11356-020-11320-y.Search in Google Scholar PubMed

23. Cantwell, M. G., Katz, D. R., Sullivan, J. C., Shapley, D., Lipscomb, J., Epstein, J., Juhl, A. R., Knudson, C., O’Mullan, G. D. Spatial patterns of pharmaceuticals and wastewater tracers in the Hudson River Estuary. Water Res. 2018, 137, 335–343. https://doi.org/10.1016/j.watres.2017.12.044.Search in Google Scholar PubMed PubMed Central

24. Castro, G., Rodríguez, I., Ramil, M., Cela, R. Selective determination of sartan drugs in environmental water samples by mixed-mode solid-phase extraction and liquid chromatography tandem mass spectrometry. Chemosphere 2019, 224, 562–571. https://doi.org/10.1016/j.chemosphere.2019.02.137.Search in Google Scholar PubMed

25. Miossec, C., Lanceleur, L., Monperrus, M. Multi-residue analysis of 44 pharmaceutical compounds in environmental water samples by solid-phase extraction coupled to liquid chromatography-tandem mass spectrometry. J. Separ. Sci. 2019, 42, 1853–1866. https://doi.org/10.1002/jssc.201801214.Search in Google Scholar PubMed

26. Fonseca, V. F., Duarte, I. A., Duarte, B., Freitas, A., Pouca, A. S., Barbosa, J., Gillanders, B. M., Reis-Santos, P. Environmental risk assessment and bioaccumulation of pharmaceuticals in a large urbanized estuary. Sci. Total Environ. 2021, 783, 147021. https://doi.org/10.1016/j.scitotenv.2021.147021.Search in Google Scholar PubMed

27. Ashfaq, M., Li, Y., Rehman, M. S. U., Zubair, M., Mustafa, G., Nazar, M. F., Yu, C. P., Sun, Q. Occurrence, spatial variation and risk assessment of pharmaceuticals and personal care products in urban wastewater, canal surface water, and their sediments: a case study of Lahore, Pakistan. Sci. Total Environ. 2019, 688, 653–663. https://doi.org/10.1016/j.scitotenv.2019.06.285.Search in Google Scholar PubMed

28. Kondor, A. C., Molnár, É., Jakab, G., Vancsik, A., Filep, T., Szeberényi, J., Szabó, L., Maász, G., Pirger, Z., Weiperth, A., Ferincz, Á. Pharmaceuticals in water and sediment of small streams under the pressure of urbanization: concentrations, interactions, and risks. Sci. Total Environ. 2022, 808, 152160. https://doi.org/10.1016/j.scitotenv.2021.152160.Search in Google Scholar PubMed

29. Lim, C. T. Nanofiber technology: current status and emerging developments. Prog. Polym. Sci. 2017, 70, 1–17.10.1016/j.progpolymsci.2017.03.002Search in Google Scholar

30. Barhoum, A., Pal, K., Rahier, H., Uludag, H., Kim, I. S., Bechelany, M. Nanofibers as new-generation materials: from spinning and nano-spinning fabrication techniques to emerging applications. Appl. Mater. Today 2019, 17, 1–35. https://doi.org/10.1016/j.apmt.2019.06.015.Search in Google Scholar

31. Dadol, G. C., Kilic, A., Tijing, L. D., Lim, K. J. A., Cabatingan, L. K., Tan, N. P. B., Stojanovska, E., Polat, Y. Solution blow spinning (SBS) and SBS-spun nanofibers: materials, methods, and applications. Mater. Today Commun. 2020, 25, 101656. https://doi.org/10.1016/j.mtcomm.2020.101656.Search in Google Scholar

32. Stojanovska, E., Canbay, E., Pampal, E. S., Calisir, M. D., Agma, O., Polat, Y., Simsek, R., Gundogdu, N. S., Akgul, Y., Kilic, A. A review on non-electro nanofibre spinning techniques. RSC Adv. 2016, 6, 83783–83801. https://doi.org/10.1039/c6ra16986d.Search in Google Scholar

33. Daristotle, J. L., Behrens, A. M., Sandler, A. D., Kofinas, P. A review of the fundamental principles and applications of solution blow spinning. ACS Appl. Mater. Interfaces 2016, 8, 34951–34963. https://doi.org/10.1021/acsami.6b12994.Search in Google Scholar PubMed PubMed Central

34. Dias, F. T. G., Rempel, S. P., Agnol, L. D., Bianchi, O. The main blow spun polymer systems: processing conditions and applications. J. Polym. Res. 2020, 27, 205. https://doi.org/10.1007/s10965-020-02173-7.Search in Google Scholar

35. Gao, Y., Zhang, J., Su, Y., Wang, H., Wang, X. X., Huang, L. P., Yu, M., Ramakrishna, S., Long, Y. Z. Recent progress and challenges in solution blow spinning. Mater. Horiz. 2021, 8, 426–446. https://doi.org/10.1039/d0mh01096k.Search in Google Scholar PubMed

36. Amini, S., Ebrahimzdeh, H., Seidi, S., Jalilian, N. Preparation of electrospun polyacrylonitrile/Ni-MOF-74 nanofibers for extraction of atenolol and captopril prior to HPLC-DAD. Microchim. Acta 2020, 187, 508. https://doi.org/10.1007/s00604-020-04483-5.Search in Google Scholar PubMed

37. Mehrabi, F., Mohamadi, M., Mostafavi, A., Hakimi, H., Shamspur, T. Magnetic solid phase extraction based on PVA-TEOS/grafted Fe3O4@ SiO2 magnetic nanofibers for analysis of sulfamethoxazole and trimethoprim in water samples. J. Solid State Chem. 2020, 292, 121716. https://doi.org/10.1016/j.jssc.2020.121716.Search in Google Scholar

38. Nasouri, B., Shariati, S., Hashemifard, N., Zanjanchi, P. Electrospun methacrylic acid-modified polystyrene nanofiber as solid phase adsorbent for preconcentration of methyl green from aqueous samples. J. Chin. Chem. Soc. 2021, 68, 285–290. https://doi.org/10.1002/jccs.202000153.Search in Google Scholar

39. Wang, R., Li, C., Li, Q., Zhang, S., Yan, Z. Electrospinning fabrication of covalent organic framework composite nanofibers for pipette tip solid phase extraction of tetracycline antibiotics in grass carp and duck. J. Chromatogr. A. 2020, 622, 461098. https://doi.org/10.1016/j.chroma.2020.461098.Search in Google Scholar PubMed

40. An, J., Dong, Z., Zhang, W., Yan, Y., Kang, W., Lian, K. Development of a simple nanofiber-based solid phase extraction procedure coupled with high performance liquid chromatography analysis for the quantification of eight sedative-hypnotic drugs in human urine samples. Microchem. J. 2021, 168, 106475. https://doi.org/10.1016/j.microc.2021.106475.Search in Google Scholar

41. Bansal, P., Purwar, R. Polyacrylonitrile/clay nanofibrous nanocomposites for efficient adsorption of Cr(VI) ions. J. Polym. Res. 2021, 28, 7. https://doi.org/10.1007/s10965-020-02362-4.Search in Google Scholar

42. Deji, Z., Zhang, X., Liu, P., Wang, X., Abulaiti, K., Huang, Z. Electrospun UiO-66-F4/polyacrylonitrile nanofibers for efficient extraction of perfluoroalkyl and polyfluoroalkyl substances in environmental media. J. Hazard Mater. 2022, 430, 128494. https://doi.org/10.1016/j.jhazmat.2022.128494.Search in Google Scholar PubMed

43. Majd, M., Nojavan, S., Maghsoudi, M. Preparation of electrospun polyacrylonitrile/ϒ-cyclodextrin metal-organic framework nanofibers for extraction of multi-classes herbicides from cereal samples before HPLC-UV analysis. Food Chem. 2022, 393, 133350. https://doi.org/10.1016/j.foodchem.2022.133350.Search in Google Scholar PubMed

44. Esfandiarnejad, R., Sereshti, H., Farahani, A. Polyaniline immobilized on polycaprolactam nanofibers as a sorbent in electrochemically controlled solid-phase microextraction coupled with HPLC for the determination of angiotensin II receptor antagonists in human blood plasma. Anal. Bioanal. Chem. 2019, 411, 3631–3640. https://doi.org/10.1007/s00216-019-01845-8.Search in Google Scholar PubMed

45. Farahani, A., Azimi, S., Tajaddodi, A., Docoslis, A., Tashakori, C. Screen-printed anion-exchange solid-phase extraction: a new strategy for point-of-care determination of angiotensin receptor blockers. Talanta 2021, 222, 121518. https://doi.org/10.1016/j.talanta.2020.121518.Search in Google Scholar PubMed

46. Reque, R., Carneiro, R. D., Yamamoto, F. Y., Ramsdorf, W. A., Martins, L. R., Guiloski, I. C., de Freitas, A. M. Ecotoxicity of losartan potassium in aquatic organisms of different trophic levels. Environ. Toxicol. Pharmacol. 2021, 87, 103727. https://doi.org/10.1016/j.etap.2021.103727.Search in Google Scholar PubMed

47. Mashayekhi, F., Hazrati, H., Shayegan, J. Fouling control mechanism by optimum ozone addition in submerged membrane bioreactors treating synthetic wastewater. J. Environ. Chem. Eng. 2018, 6, 7294–7301. https://doi.org/10.1016/j.jece.2018.10.016.Search in Google Scholar

48. Jingrui, X., Alam, M. A., Jing, W., Wenchao, W., Yusof, Z. N. B., Daroch, M., Zhang, D., Lifen, L., Russel, M. Enhanced removal of tetracycline from synthetic wastewater using an optimal ratio of co-culture of Desmodesmus sp. and Klebsiella pneumoniae. Bioresour. Technol. 2022, 351, 127056. https://doi.org/10.1016/j.biortech.2022.127056.Search in Google Scholar PubMed

49. Chang, R., Thoman, J. W. Physical Chemistry for the Chemical Sciences; University Science Books: Mill Valley, Canada, 2014.Search in Google Scholar

50. Tiwari, S., Gaur, A., Kumar, C., Maiti, P. Ionic liquid-based electrospun polymer nanohybrid for energy harvesting. ACS Appl. Electron. Mater. 2021, 3, 2738–2747. https://doi.org/10.1021/acsaelm.1c00307.Search in Google Scholar

51. Azimi, B., Maleki, H., Gigante, V., Bagherzadeh, R., Mezzetta, A., Milazzo, M., Guazzelli, L., Cinelli, P., Lazzeri, A., Danti, S. Cellulose-based fiber spinning processes using ionic liquids. Cellulose 2022, 29, 1–51. https://doi.org/10.1007/s10570-022-04473-1.Search in Google Scholar

52. Rezaei Soulegani, S., Sherafat, Z., Rasouli, M. Morphology, physical, and mechanical properties of potentially applicable coelectrospun polysulfone/chitosan-polyvinyl alcohol fibrous membranes in water purification. J. Appl. Polym. Sci. 2021, 138, 49933. https://doi.org/10.1002/app.49933.Search in Google Scholar

53. Filimon, A., Olaru, N., Doroftei, F., Coroaba, A., Dunca, S. Processing of quaternized polysulfones solutions as tool in design of electrospun nanofibers: microstructural characteristics and antimicrobial activity. J. Mol. Liq. 2021, 330, 115664. https://doi.org/10.1016/j.molliq.2021.115664.Search in Google Scholar

54. Sellami, F., Kebiche-Senhadji, O., Marais, S., Fatyeyeva, K. PVC/EVA-based polymer inclusion membranes with improved stability and Cr (VI) extraction capacity: water plasticization effect. J. Hazard Mater. 2022, 436, 129069. https://doi.org/10.1016/j.jhazmat.2022.129069.Search in Google Scholar PubMed

55. de Andrade, J. R., Oliveira, M. F., Canevesi, R. L. S., Landers, R., da Silva, M. G. C., Vieira, M. G. A. Comparative adsorption of diclofenac sodium and losartan potassium in organophilic clay-packed fixed-bed: X-ray photoelectron spectroscopy characterization, experimental tests and theoretical study on DFT-based chemical descriptors. J. Mol. Liq. 2020, 312, 113427. https://doi.org/10.1016/j.molliq.2020.113427.Search in Google Scholar

56. Ardekani, R., Borhani, S., Rezaei, B. Selective molecularly imprinted polymer nanofiber sorbent for the extraction of bisphenol A in a water sample. Polym. Int. 2020, 69, 780–793. https://doi.org/10.1002/pi.6013.Search in Google Scholar

57. Bagheri, A. R., Ghaedi, M. Green preparation of dual-template chitosan-based magnetic water-compatible molecularly imprinted biopolymer. Carbohydr. Polym. 2020, 236, 116102. https://doi.org/10.1016/j.carbpol.2020.116102.Search in Google Scholar PubMed

Received: 2022-04-13
Accepted: 2022-07-07
Published Online: 2022-08-15
Published in Print: 2022-11-25

© 2022 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 11.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/polyeng-2022-0080/html
Scroll to top button