Home Doubly modified MWCNTs embedded in polyethersulfone (PES) ultrafiltration membrane and its anti-fouling performance
Article
Licensed
Unlicensed Requires Authentication

Doubly modified MWCNTs embedded in polyethersulfone (PES) ultrafiltration membrane and its anti-fouling performance

  • Yadi Zhang ORCID logo , Chengcong Wang , Lijuan Zhang EMAIL logo , Jianghuan Shi , Haikuan Yuan EMAIL logo and Jie Lu
Published/Copyright: June 27, 2022
Become an author with De Gruyter Brill

Abstract

Multiwall carbon nanotubes (MWCNTs) are often used to modify polymer membranes as additives, however, MWCNTs are easy to agglomerate and entangle in polymer matrix due to their own strong van der Waals force. MWCNTs were doubly modified by bonding octadecylamine (ODA) and SiO2 through the respective amidation and esterification reactions to prepare SiO2-MWCNT-ODA nanocomposites. The amino groups on ODA were amidated with the carboxyl groups on MWCNT-COOH. Then the hydroxyl groups on SiO2 were bonded to MWCNT-COOH through esterification to obtain SiO2-MWCNT-ODA nanocomposites. PES/SiO2-MWCNT-ODA composite ultrafiltration (UF) membrane was prepared by non-solvent induced phase separation (NIPS) method. SiO2-MWCNT-ODA nanocomposites and PES/SiO2-MWCNT-ODA membrane were characterized by FTIR, XRD, TGA, and SEM, etc. The results showed that PES/SiO2-MWCNT-ODA membrane had significantly improved permeability, rejection, and antifouling properties for comparison with PES membrane. The pure water flux of PES/Nano.2-0.5 reached 212.5 L m−2 h−1, which was approximately 2.6 times than that of PES membrane, and the rejection of BSA protein for composite membrane was as high as 94.2%. PES/SiO2-MWCNT-ODA composite membrane had excellent antifouling performance and the flux recovery rate (FRR) of PES/Nano.2-0.5 membrane could still maintain at higher value of 84.82% after two cycles in the antifouling test.


Corresponding authors: Lijuan Zhang and Haikuan Yuan, College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai 201620, China, E-mail: (L. Zhang), (H. Yuan)

Funding source: National Natural Science Foundation of China http://dx.doi.org/10.13039/501100001809

Award Identifier / Grant number: 21206146, 22078191, 21978165, 22081340412, 9215602

  1. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: This work was financially supported by the National Natural Science Foundation of China (nos. 21206146, 22078191, 21978165, 22081340412 and 92156020).

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

1. Vander, B. B. Chemical modification of polyethersulfone nanofiltration membranes: a review. J. Appl. Polym. Sci. 2009, 114, 630–642; https://doi.org/10.1002/app.30578.Search in Google Scholar

2. Khulbe, K. C., Feng, C., Matsuura, T. The art of surface modification of synthetic polymeric membranes. J. Appl. Polym. Sci. 2010, 115, 855–895; https://doi.org/10.1002/app.31108.Search in Google Scholar

3. Lu, R., Zhang, C., Piatkovsky, M., Ulbricht, M., Herzberg, M., Nguyena, T. H. Improvement of virus removal using ultrafiltration membranes modified with grafted zwitterionic polymer hydrogels. Water Res. 2017, 116, 86–94; https://doi.org/10.1016/j.watres.2017.03.023.Search in Google Scholar PubMed

4. Tian, J. Y., Ernst, M., Cui, F. Y., Jekel, M. Effect of different cations on UF membrane fouling by NOM fractions. Chem. Eng. J. 2013, 223, 547–555; https://doi.org/10.1016/j.cej.2013.03.043.Search in Google Scholar

5. Zeng, J., Liu, J. F. Economic model predictive control of wastewater treatment processes. Ind. Eng. Chem. Res. 2015, 54, 5710–5721; https://doi.org/10.1021/ie504995n.Search in Google Scholar

6. Wang, J. X., Qiu, M., He, C. J. A zwitterionic polymer/PES membrane for enhanced antifouling performance and promoting hemocompatibility. J. Membr. Sci. 2020, 606, 118119; https://doi.org/10.1016/j.memsci.2020.118119.Search in Google Scholar

7. Aani, S. A., Haroutounian, A., Wright, C. J., Hilal, N. Thin film nanocomposite (TFN) membranes modified with polydopamine coated metals/carbon-nanostructures for desalination applications. Desalination 2018, 427, 60–74; https://doi.org/10.1016/j.desal.2017.10.011.Search in Google Scholar

8. Zverina, L., Koch, M., Andersen, M. F., Manuel, P., John, M. W., Anders, E. D. Controlled pore collapse to increase solute rejection of modified PES membranes. J. Membr. Sci. 2020, 595, 117515; https://doi.org/10.1016/j.memsci.2019.117515.Search in Google Scholar

9. Santosh, V., Palodkar, K. K., Veerababu, P., Sainath, A. V. S., Reddy, A. V. R. Polysulfone with glycopolymer for development of antifouling ultrafiltration membranes. J. Polym. Res. 2021, 28, 240; https://doi.org/10.1007/s10965-021-02583-1.Search in Google Scholar

10. Vatanpour, V., Shokravi, A., Zarrabi, H., Nikjavan, Z., Javadi, A. Fabrication and characterization of anti-fouling and anti-bacterial Ag-loaded graphene oxide/polyethersulfone mixed matrix membrane. J. Ind. Eng. Chem. 2015, 30, 342–352; https://doi.org/10.1016/j.jiec.2015.06.004.Search in Google Scholar

11. Wang, L., Song, X. J., Wang, T., Wang, S. Z., Wang, Z. N., Gao, C. Fabrication and characterization of polyethersulfone/carbon nanotubes (PES/CNTs) based mixed matrix membranes (MMMs) for nanofiltration application. J. Appl. Surf. Sci. 2015, 330, 118–125; https://doi.org/10.1016/j.apsusc.2014.12.183.Search in Google Scholar

12. Zangeneh, H., Zinatizadeh, A. A., Zinadini, S. Self-cleaning properties of L-Histidine doped TiO2-CdS/PES nanocomposite membrane: fabrication, characterization and performance. Separ. Purif. Technol. 2020, 240, 116591; https://doi.org/10.1016/j.seppur.2020.116591.Search in Google Scholar

13. Shen, J. N., Ruan, H. M., Wu, L. G., Gao, C. J. Preparation and characterization of PES–SiO2 organic–inorganic composite ultrafiltration membrane for raw water pretreatment. Chem. Eng. J. 2011, 168, 1272–1278; https://doi.org/10.1016/j.cej.2011.02.039.Search in Google Scholar

14. Vatanpour, V., Madaeni, S. S., Moradian, R., Zinadini, S., Astinchap, B. Fabrication and characterization of novel antifouling nanofiltration membrane prepared from oxidized multiwalled carbon nanotube/polyethersulfone nanocomposite. J. Membr. Sci. 2011, 375, 284–294; https://doi.org/10.1016/j.memsci.2011.03.055.Search in Google Scholar

15. Al-Saleh, M. H., Sundararaj, U. Electromagnetic interference shielding mechanisms of CNT/polymer composites. Carbon 2009, 47, 1738–1746; https://doi.org/10.1016/j.carbon.2009.02.030.Search in Google Scholar

16. Ismail, A. F., Rahim, N. H., Mustafa, A., Matsuura, T., Ng, B. C., Abdullah, S., Hashemifard, S. A. Gas separation performance of polyethersulfone/multi-walled carbon nanotubes mixed matrix membranes. Separ. Purif. Technol. 2011, 80, 20–31; https://doi.org/10.1016/j.seppur.2011.03.031.Search in Google Scholar

17. Yen, H. W., Chen, Z. H., Yang, I. K. Use of the composite membrane of poly(ether-block-amide) and carbon nanotubes (CNTs) in a pervaporation system incorporated with fermentation for butanol production by Clostridium acetobutylicum. Bioresour. Technol. 2012, 109, 105–109; https://doi.org/10.1016/j.biortech.2012.01.017.Search in Google Scholar PubMed

18. Li, Q., Yang, D. F., Shi, J. S., Xu, X., Yan, S. H., Liu, Q. Z. Biomimetic modification of large diameter carbon nanotubes and the desalination behavior of its reverse osmosis membrane. Desalination 2016, 379, 164–171; https://doi.org/10.1016/j.desal.2015.11.008.Search in Google Scholar

19. Marroquin, J. B., Rhee, K. Y., Park, S. J. Chitosan nanocomposite films: enhanced electrical conductivity, thermal stability, and mechanical properties. Carbohydr. Polym. 2012, 92, 1783–1791; https://doi.org/10.1016/j.carbpol.2012.11.042.Search in Google Scholar PubMed

20. Salvetat, J. P., Briggs, G. A. D., Bonard, J. M., Bacsa, R. R., Kulik, A. J., Stöckli, T., Burnham, N. A., Forro, L. Elastic and shear moduli of single-walled carbon nanotube ropes. Phys. Rev. Lett. 1999, 82, 944–947; https://doi.org/10.1103/physrevlett.82.944.Search in Google Scholar

21. Santosh, V., Babu, P. V., Gopinath, J., Rao, N. N. M., Sainath, A. V. S., Reddy, A. V. R. Development of hydroxyl and carboxylic acid functionalized CNTs–polysulphone nanocomposite fouling-resistant ultrafiltration membranes for oil–water separation. Bull. Mater. Sci. 2020, 43, 125; https://doi.org/10.1007/s12034-020-2079-7.Search in Google Scholar

22. Santosh, V., Gopinath, J., Babu, P. V., Sainath, A. V. S., Reddy, A. V. R. Acetyl-d-glucopyranoside functionalized carbon nanotubes for the development of high performance ultrafiltration membranes. Separ. Purif. Technol. 2018, 191, 134–143; https://doi.org/10.1016/j.seppur.2017.09.018.Search in Google Scholar

23. Komarova, N. S., Krivenko, A. G., Ryabenko, A. G., Naumkin, A. V., Stenina, E. V., Sviridova, L. N. Spectroscopic characterization of the electrochemical functionalization of single-walled carbon nanotubes in aqueous and organic media. Carbon 2012, 50, 922–931; https://doi.org/10.1016/j.carbon.2011.09.054.Search in Google Scholar

24. Wang, W. Y., Zhu, L. Y., Shan, B. J., Xie, C. C., Liu, C. N., Cui, F. Y., Li, G. F. Preparation and characterization of SLS-CNT/PES ultrafiltration membrane with antifouling and antibacterial properties. J. Membr. Sci. 2018, 548, 459–469; https://doi.org/10.1016/j.memsci.2017.11.046.Search in Google Scholar

25. Rahimi, Z., Zinatizadeh, A. A. L., Zinadini, S. Preparation of high antibiofouling amino functionalized MWCNTs/PES nanocomposite ultrafiltration membrane for application in membrane bioreactor. J. Ind. Eng. Chem. 2015, 29, 366–374; https://doi.org/10.1016/j.jiec.2015.04.017.Search in Google Scholar

26. Daraei, P., Madaeni, S. S., Ghaemi, N., Mohammad, A., Bandar, A., Rostam, M. Enhancing antifouling capability of PES membrane via mixing with various types of polymer modified multi-walled carbon nanotube. J. Membr. Sci. 2013, 444, 184–191; https://doi.org/10.1016/j.memsci.2013.05.020.Search in Google Scholar

27. Nagamine, S., Mizuno, Y., Hikima, Y., Okada, K., Wang, L., Ohshima, M. Reinforcement of polypropylene by cellulose microfibers modified with polydopamine and octadecylamine. J. Appl. Polym. Sci. 2020, 138, e49851; https://doi.org/10.1002/app.49851.Search in Google Scholar

28. Ahsani, M., Hazrati, H., Javadi, M., Ulbricht, M., Yegani, R. Preparation of antibiofouling nanocomposite PVDF/Ag-SiO2 membrane and long-term performance evaluation in the MBR system fed by real pharmaceutical wastewater. Separ. Purif. Technol. 2020, 249, 116938; https://doi.org/10.1016/j.seppur.2020.116938.Search in Google Scholar

29. Yang, J., Song, H. J., Guo, Z. G. A study of synthesizing stable super-slip carbon nanotubes by grafting octadecylamine. J. Colloid Interface Sci. 2019, 540, 126–133; https://doi.org/10.1016/j.jcis.2019.01.015.Search in Google Scholar PubMed

30. Yuan, H. K., Wang, Y. M., Cheng, L., Liu, W. C., Ren, J., Meng, L. H. Improved antifouling property of poly(ether sulfone) ultrafiltration membrane through blending with poly(vinyl alcohol). Ind. Eng. Chem. Res. 2014, 53, 18549–18557; https://doi.org/10.1021/ie502797k.Search in Google Scholar

31. Xu, Z. W., Zhang, J. G., Shan, M. J., Li, Y. L., Li, B. D., Niu, J. R., Zhou, B. M., Qian, X. M. Organosilane-functionalized graphene oxide for enhanced antifouling and mechanical properties of polyvinylidene fluoride ultrafiltration membranes. J. Membr. Sci. 2014, 458, 1–13; https://doi.org/10.1016/j.memsci.2014.01.050.Search in Google Scholar

32. de Menezes, B. R. C., Ferreira, F. V., Silva, B. C., Simonetti, E. A. N., Bastos, T. M., Cividanes, L. S., Thim, G. P. Effects of octadecylamine functionalization of carbon nanotubes on dispersion, polarity, and mechanical properties of CNT/HDPE nanocomposites. J. Mater. Sci. 2018, 53, 14311–14327; https://doi.org/10.1007/s10853-018-2627-3.Search in Google Scholar

33. Khalid, A., Abdel-Karim, A., Atieh, M. A., Saqib, J., McKay, G. PEG-CNTs nanocomposite PSU membranes for wastewater treatment by membrane bioreactor. Separ. Purif. Technol. 2018, 190, 165–176; https://doi.org/10.1016/j.seppur.2017.08.055.Search in Google Scholar

34. Zeng, W. J., Li, C., Feng, Y., Zeng, S. H., Fu, B. X., Zhang, X. L. Carboxylated multi-walled carbon nanotubes (MWCNTs-COOH)-intercalated graphene oxide membranes for highly efficient treatment of organic wastewater. J. Water Proc. Eng. 2021, 40, 101901; https://doi.org/10.1016/j.jwpe.2020.101901.Search in Google Scholar

35. Khakpour, R., Tahermansouri, H. Synthesis, characterization and study of sorption parameters of multi-walled carbon nanotubes/chitosan nanocomposite for the removal of picric acid from aqueous solutions. Int. J. Biol. Macromol. 2018, 109, 598–610; https://doi.org/10.1016/j.ijbiomac.2017.12.105.Search in Google Scholar PubMed

36. Salam, M. A., Burk, R. Synthesis and characterization of multi-walled carbon nanotubes modified with octadecylamine and polyethylene glycol. Arab. J. Chem. 2017, 10, S921–S927; https://doi.org/10.1016/j.arabjc.2012.12.028.Search in Google Scholar

37. Jamalpour, S., Ghahramani, M., Ghaffarian, S. R., Javanbakht, M. Improved performance of lithium ion battery by the incorporation of novel synthesized organic-inorganic hybrid nanoparticles SiO2-poly(methyl methacrylate-co-ureidopyrimidinone) in gel polymer electrolyte based on poly (vinylidene fluoride). Polymer 2021, 228, 123924; https://doi.org/10.1016/j.polymer.2021.123924.Search in Google Scholar

38. Wu, W., Liu, T., Zhang, D. L., Sun, Q. J., Cao, K., Zha, J. W., Lu, Y., Wang, B., Cao, X. W., Feng, Y. H., Roy, V. A. L., Li, R. K. Y. Significantly improved dielectric properties of polylactide nanocomposites via TiO2 decorated carbon nanotubes. Compos. Appl. Sci. Manuf. 2019, 127, 105650; https://doi.org/10.1016/j.compositesa.2019.105650.Search in Google Scholar

39. Chen, Z., Zhu, G. S., Wu, Y., Sun, J. Q., Abbas, M., Wang, P. F., Chen, J. G. The promotion effect of transition metals on water-tolerant performance of Cu/SiO2 catalysts in hydrogenation reaction. ChemistrySelect 2019, 4, 14063–14068; https://doi.org/10.1002/slct.201904291.Search in Google Scholar

40. Gupta, R., Singh, B. Enhancement of electrical conductivity and magnetic properties of bimetallic Schiff base complex on grafting to MWCNTs. J. Mater. Sci. Mater. Electron. 2019, 30, 11888–11906; https://doi.org/10.1007/s10854-019-01522-7.Search in Google Scholar

41. Sadegh, H., Zare, K., Maazinejad, B., Shahryari-ghoshekandi, R., Tyagi, I., Agarwal, S., Gupta, V. K. Synthesis of MWCNT-COOH-Cysteamine composite and its application for dye removal. J. Mol. Liq. 2016, 215, 221–228; https://doi.org/10.1016/j.molliq.2015.12.042.Search in Google Scholar

42. Park, H. M., Oh, H., Jee, K. Y., Lee, Y. T. Synthesis of PVDF/MWCNT nanocomplex microfiltration membrane via atom transfer radical addition (ATRA) with enhanced fouling performance. Separ. Purif. Technol. 2020, 246, 116860; https://doi.org/10.1016/j.seppur.2020.116860.Search in Google Scholar

43. Makhetha, T. A., Moutloali, R. M. Antifouling properties of Cu(tpa)@GO/PES composite membranes and selective dye rejection. J. Membr. Sci. 2018, 554, 195–210; https://doi.org/10.1016/j.memsci.2018.03.003.Search in Google Scholar

44. Celik, E., Park, H., Choi, H., Choi, H. Carbon nanotube blended polyethersulfone membranes for fouling control in water treatment. Water Res. 2011, 45, 274–282; https://doi.org/10.1016/j.watres.2010.07.060.Search in Google Scholar PubMed

45. Wang, C. C., Zhang, L. J., Yuan, H. K., Fu, Y. J., Zeng, Z., Lu, J. Preparation of a PES/PFSA-g-MWCNT ultrafiltration membrane with improved permeation and antifouling properties. New J. Chem. 2021, 45, 4950–4962; https://doi.org/10.1039/d0nj05322h.Search in Google Scholar

46. Nasrollahi, N., Vatanpour, V., Aber, S., Mahmoodi, N. M. Preparation and characterization of a novel polyethersulfone (PES) ultrafiltration membrane modified with a CuO/ZnO nanocomposite to improve permeability and antifouling properties. Separ. Purif. Technol. 2018, 192, 369–382; https://doi.org/10.1016/j.seppur.2017.10.034.Search in Google Scholar

47. Algamdi, M. S., Alsohaimi, I. H., Lawler, J., Ali, H. M., Aldawsari, A. M., Hassan, H. M. A. Fabrication of graphene oxide incorporated polyethersulfone hybrid ultrafiltration membranes for humic acid removal. Separ. Purif. Technol. 2019, 223, 17–23; https://doi.org/10.1016/j.seppur.2019.04.057.Search in Google Scholar

48. Sert, B., Ozay, Y., Harputlu, E., Ozdemir, S., Yalcin, M. S., Ocakoglu, K., Dizge, N. Improvement in performance of g-C3N4 nanosheets blended PES ultrafiltration membranes including biological properties. Colloids Surf., A 2021, 623, 126571; https://doi.org/10.1016/j.colsurfa.2021.126571.Search in Google Scholar

49. Wang, T. X., Chen, S. R., Wang, T., Wu, L. G., Wang, Y. X. PES mixed-matrix ultrafiltration membranes incorporating ZIF-8 and poly (ionic liquid) by microemulsion synthetic with flux and antifouling properties. Appl. Surf. Sci. 2022, 576, 151815; https://doi.org/10.1016/j.apsusc.2021.151815.Search in Google Scholar

50. Gholami, F., Zinadini, S., Zinatizadeh, A. A. Preparation of high performance CuBTC/PES ultrafiltration membrane for oily wastewater separation; A good strategy for advanced separation. J. Environ. Chem. Eng. 2020, 8, 104482; https://doi.org/10.1016/j.jece.2020.104482.Search in Google Scholar

51. Samari, M., Zinadini, S., Zinatizadeh, A. A., Jafarzadeh, M., Gholami, F. Designing of a novel polyethersulfone (PES) ultrafiltration (UF) membrane with thermal stability and high fouling resistance using melamine-modified zirconium-based metal-organic framework (UiO-66-NH2/MOF). Separ. Purif. Technol. 2020, 251, 117010; https://doi.org/10.1016/j.seppur.2020.117010.Search in Google Scholar

52. Ma, D. Y., Zou, X. Q., Zhao, Z. H., Zhou, J., Li, S., Yin, H. X., Wang, J. K. Hydrophilic PAA-g-MWCNT/TiO2@PES nano-matrix composite membranes: anti-fouling, antibacterial and photocatalytic. Eur. Polym. J. 2022, 168, 111006; https://doi.org/10.1016/j.eurpolymj.2022.111006.Search in Google Scholar

Received: 2022-02-16
Accepted: 2022-05-10
Published Online: 2022-06-27
Published in Print: 2022-10-26

© 2022 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 28.11.2025 from https://www.degruyterbrill.com/document/doi/10.1515/polyeng-2022-0021/pdf
Scroll to top button