Synergistic effect of organic-Zn(H2PO2)2 and lithium containing polyhedral oligomeric phenyl silse-squioxane on flame-retardant, thermal and mechanical properties of poly(ethylene terephthalate)
Abstract
A novel synergy flame retardant system of poly(ethylene terephthalate) (PET)/organic-Zn(H2PO2)2/lithium containing polyhedral oligoheptyl silse-squioxane (Li-Ph-POSS) composites was prepared by the melt-blending method to improve the flame retardancy of PET. The synergistic effect of organic-Zn(H2PO2)2 and Li-Ph-POSS on the flame retardancy, thermal, and mechanical properties of the PET composites was investigated by the limiting oxygen index, vertical burning test, cone calorimeter, thermogravimetric analysis, differential scanning calorimeter, tensile tester, and dynamic mechanical analysis, respectively. The results show that the synergistic flame retardant effect between organic-Zn(H2PO2)2 and Li-Ph-POSS improves both the flame retardancy and the crystallization of PET. Moreover, the Li-Ph-POSS has a positive effect on the mechanical property of PET. This work provides a promising strategy for mitigating the fire hazard of PET using this synergy flame retardant system.
Funding source: General Scientific Research Projects of Education Department of Zhejiang
Award Identifier / Grant number: 21200069-F, Application No.Y202148175
Funding source: Fundamental Research Funds of Shaoxing Keqiao Research Institute of Zhejiang Sci-Tech University
Award Identifier / Grant number: 20200617-J
Funding source: Economy and Information Technology Department of Zhejiang
Award Identifier / Grant number: 19016232-M
Funding source: Ph.D. Research Start-Up Foundation of Zhejiang Sci-Tech University
Award Identifier / Grant number: 19012098-Y
Funding source: “Top Soldier” and “Leading Wild Goose” R&D Project of Zhejiang
Award Identifier / Grant number: 2022C01210
Funding source: Outstanding Doctors Foundation of Zhejiang Sci-Tech University
Award Identifier / Grant number: 2019YBZX04
-
Author contribution: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.
-
Research funding: This research was funded by the “Top Soldier” and “Leading Wild Goose” R&D Project of Zhejiang (grant no. 2022C01210), General Scientific Research Projects of Education Department of Zhejiang (grant no. 21200069-F, application no. Y202148175), Economy and Information Technology Department of Zhejiang (grant no. 19016232-M), Ph.D. Research Start-Up Foundation of Zhejiang Sci-Tech University (grant no. 19012098-Y), Research Funds of Shaoxing Keqiao Research Institute of Zhejiang Sci-Tech University (grant no. 20200617-J), Outstanding Doctors Foundation of Zhejiang Sci-Tech University (grant no. 2019YBZX04).
-
Conflict of interest statement: The authors declare no conflicts of interest regarding this article.
References
1. Chen, S., Xie, S., Guang, S., Bao, J., Zhang, X., Chen, W. Crystallization and thermal behaviors of poly (ethylene terephthalate)/bisphenols complexes through melt post-polycondensation. Polymers 2020, 12, 3053.https://doi.org/10.3390/polym12123053.Search in Google Scholar PubMed PubMed Central
2. Perera, S., Arulrajah, A., Wong, Y. C., Horpibulsuk, S., Maghool, F. Utilizing recycled PET blends with demolition wastes as construction materials. Const. Build. Mater. 2019, 221, 200–209.https://doi.org/10.1016/j.conbuildmat.2019.06.047.Search in Google Scholar
3. Li, S., Wang, R. Poly (ethylene terephthalate)/poly (ethylene-co-vinyl alcohol) sheath-core fibers: preparation and characterization. J. Polym. Eng. 2015, 35, 785–791.https://doi.org/10.1515/polyeng-2014-0329.Search in Google Scholar
4. Michaeli, W., Schmitz, T. PET film extrusion with degassing. J. Polym. Eng. 2006, 26, 147–160.https://doi.org/10.1515/polyeng.2006.26.2-4.147.Search in Google Scholar
5. Li, S., Vela, I., Järvinen, I. M., Seemann, M. Polyethylene terephthalate (PET) recycling via steam gasification–the effect of operating conditions on gas and tar composition. Waste Manag. 2021, 130, 117–126.https://doi.org/10.1016/j.wasman.2021.05.023.Search in Google Scholar PubMed
6. Laoutid, F., Ferry, L., Lopez‐Cuesta, J. M., Crespy, A. Flame-retardant action of red phosphorus/magnesium oxide and red phosphorus/iron oxide compositions in recycled PET. Fire Mater. 2006, 30, 343–358.https://doi.org/10.1002/fam.914.Search in Google Scholar
7. Wang, W., Meng, L., Huang, Y. Hydrolytic degradation of monomer casting nylon in subcritical water. Polym. Degrad. Stab. 2014, 110, 312–317.https://doi.org/10.1016/j.polymdegradstab.2014.09.014.Search in Google Scholar
8. Salmeia, K. A., Gooneie, A., Simonetti, P., Nazir, R., Kaiser, J. P., Rippl, A., Hirsch, C., Lehner, S., Rupper, P., Hufenus, R., Gaan, S. Comprehensive study on flame retardant polyesters from phosphorus additives. Polym. Degrad. Stab. 2018, 155, 22–34; https://doi.org/10.1016/j.polymdegradstab.2018.07.006.Search in Google Scholar
9. Han, X., Zhao, J., Liu, S., Yuan, Y. Flame retardancy mechanism of poly(butylene terephthalate)/aluminum diethylphosphinate composites with an epoxy-functional polysiloxane. RSC Adv. 2014, 4, 16551–16560.https://doi.org/10.1039/c4ra00515e.Search in Google Scholar
10. Zhou, S., Yang, Y., Zhu, Z., Xie, Z., Sun, X., Jia, C., Liu, F., Wang, J., Yang, J., Yang, J. Preparation of a halogen-free flame retardant and its effect on the poly(L-lactic acid) as the flame retardant material. Polymer 2021, 229, 124027.https://doi.org/10.1016/j.polymer.2021.124027.Search in Google Scholar
11. Li, J., Zeng, X., Kong, D., Xu, H., Zhang, L., Zhong, Y., Sui, X., Mao, Z. Synergistic effects of a novel silicon-containing triazine charring agent on the flame-retardant properties of poly(ethylene terephthalate)/hexakis (4-phenoxy)cyclotriphosphazene composites. Polym. Compos. 2018, 39, 858–868.https://doi.org/10.1002/pc.24009.Search in Google Scholar
12. Cross, M. S., Cusack, P. A., Hornsby, P. R. Effects of tin additives on the flammability and smoke emission characteristics of halogen-free ethylene-vinyl acetate copolymer. Polym. Degrad. Stabil. 2003, 79, 309–318.https://doi.org/10.1016/s0141-3910(02)00294-x.Search in Google Scholar
13. Feng, C., Liang, M., Jiang, J., Huang, J., Liu, H. Flame retardant properties and mechanism of an efficient intumescent flame retardant PLA composites. Polym. Adv. Technol. 2016, 27, 693–700.https://doi.org/10.1002/pat.3743.Search in Google Scholar
14. Kilinc, M., Cakal, G. O., Bayram, G., Eroglu, I., Özkar, S. Flame retardancy and mechanical properties of pet-based composites containing phosphorus and boron-based additives. J. Appl. Polym. Sci. 2015, 132, 42016.https://doi.org/10.1002/app.42016.Search in Google Scholar
15. Zhou, X., Qiu, S., Mu, X., Zhou, M., Cai, W., Song, L., Xing, W., Hu, Y. Polyphosphazenes-based flame retardants: a review. Compos. B Eng. 2020, 202, 108397.https://doi.org/10.1016/j.compositesb.2020.108397.Search in Google Scholar
16. Naik, D., Wazarkar, K., Sabnis, A. UV-curable flame-retardant coatings based on phosphorous and silicon containing oligomers. J. Coat. Technol. Res. 2019, 16, 733–743.https://doi.org/10.1007/s11998-018-0151-7.Search in Google Scholar
17. Price, D., Cunliffe, L. K., Bullett, K. J., Hull, T. R., Milnes, G. J., Ebdon, J. R., Hunt, P., Joseph, P. Thermal behaviour of covalently bonded phosphate and phosphonate flame retardant polystyrene systems. Polym. Degrad. Stab. 2007, 92, 1101–1114.https://doi.org/10.1016/j.polymdegradstab.2007.02.003.Search in Google Scholar
18. La Rosa, A. D., Failla, S., Finocchiaro, P., Recca, A., Siracusa, V., Carter, J. T., McGrail, P. T. Flame-retarding properties of a new phosphorus-containing monomer used as hardener in an epoxy system. J. Polym. Eng. 1999, 19, 151–160.https://doi.org/10.1515/polyeng-1999-0302.Search in Google Scholar
19. Netkueakul, W., Fischer, B., Walder, C., Nüesch, F., Rees, M., Jovic, M., Gaan, S., Jacob, P., Wang, J. Effects of combining graphene nanoplatelet and phosphorous flame retardant as additives on mechanical properties and flame retardancy of epoxy nanocomposite. Polymers 2020, 12, 2349.https://doi.org/10.3390/polym12102349.Search in Google Scholar PubMed PubMed Central
20. Tawiah, B., Yu, B., Fei, B. Advances in flame retardant poly(lactic acid). Polymers 2018, 10, 876.https://doi.org/10.3390/polym10080876.Search in Google Scholar PubMed PubMed Central
21. Keshavarzian, A., Haghighi, M. N., Taromi, F. A., Abedini, H. Phosphorus-based flame retardant poly (butylene terephthalate): synthesis, flame retardancy and thermal behavior. Polym. Degrad. Stab. 2020, 180, 109310.https://doi.org/10.1016/j.polymdegradstab.2020.109310.Search in Google Scholar
22. Lu, L., Guo, N, Qian, X., Yang, S., Wang, X., Jin, J., Shao, G. Thermal degradation and combustion behavior of intumescent flame-retardant polypropylene with novel phosphorus-based flame retardants. J. Appl. Polym. Sci. 2018, 135, 45962.https://doi.org/10.1002/app.45962.Search in Google Scholar
23. Amarnath, N., Appavoo, D., Lochab, B. Eco-friendly halogen-free flame retardant cardanol polyphosphazene polybenzoxazine networks. ACS Sustainable Chem. Eng. 2018, 6, 389–402.https://doi.org/10.1021/acssuschemeng.7b02657.Search in Google Scholar
24. Li, J., Pan, F., Zeng, X., Xu, H., Zhang, L., Zhong, Y., Sui, X., Mao, Z. The flame-retardant properties and mechanisms of poly(ethylene terephthalate)/hexakis (para-allyloxyphenoxy) cyclotriphosphazene systems. J. Appl. Polym. Sci. 2015, 132, 42711.https://doi.org/10.1002/app.42711.Search in Google Scholar
25. Pagacz, J., Hebda, E., Janowski, B., Sternik, D., Jancia, M., Pielichowski, K. Thermal decomposition studies on polyurethane elastomers reinforced with polyhedral silsesquioxanes by evolved gas analysis. Polym. Degrad. Stab. 2018, 149, 129–142.https://doi.org/10.1016/j.polymdegradstab.2018.01.028.Search in Google Scholar
26. Lichtenhan, J. D., Pielichowski, K., Blanco, I. POSS-based polymers. Polymers 2019, 11, 1727.https://doi.org/10.3390/polym11101727.Search in Google Scholar PubMed PubMed Central
27. Qi, Z., Zhang, W., He, X., Yang, R. High-efficiency flame retardency of epoxy resin composites with perfect T-8 caged phosphorus containing polyhedral oligomeric silsesquioxanes (P-POSSs). Compos. Sci. Technol. 2016, 127, 8–19.https://doi.org/10.1016/j.compscitech.2016.02.026.Search in Google Scholar
28. Yang, B., Chen, Y., Zhang, M., Yuan, G. Synergistic and compatibilizing effect of octavinyl polyhedral oligomeric silsesquioxane nanoparticles in polypropylene/ intumescent flame retardant composite system. Compos. Appl. Sci. Manuf. 2019, 123, 46–58.https://doi.org/10.1016/j.compositesa.2019.04.032.Search in Google Scholar
29. Zhu, S. E., Wang, L. L., Wang, M. Z., Yuen, A. C. Y., Chen, T. B. Y., Yang, W., Pan, T. Z., Zhi, Y. R., Lu, H. D. Simultaneous enhancements in the mechanical, thermal stability, and flame retardant properties of poly(1,4-butylene terephthalate) nanocomposites with a novel phosphorus-nitrogen-containing polyhedral oligomeric silsesquioxane. RSC Adv. 2017, 7, 54021–54030.https://doi.org/10.1039/c7ra11437k.Search in Google Scholar
30. Rybiński, P., Syrek, B., Bradło, D., Żukowski, W. Effect of POSS particles and of poss and poly-(melamine phosphate) on the thermal properties and flame retardance of silicone rubber composites. Materials 2018, 11, 1298.10.3390/ma11081298Search in Google Scholar PubMed PubMed Central
31. Zhai, C., Xin, F., Cai, L., Chen, Y., Qian, L. Flame retardancy and pyrolysis behavior of an epoxy resin composite flame-retarded by diphenylphosphinyl-POSS. Polym. Eng. Sci. 2020, 60, 3024–3035.https://doi.org/10.1002/pen.25533.Search in Google Scholar
32. Liu, Y., Fang, Z. Combination of montmorillonite and a Schiff-base polyphosphate ester to improve the flame retardancy of ethylene-vinyl acetate copolymer. J. Polym. Eng. 2015, 35, 443–449.https://doi.org/10.1515/polyeng-2014-0291.Search in Google Scholar
33. Liu, L., Zhang, W., Yang, R. Flame retardant epoxy composites with epoxy-containing polyhedral oligomeric silsesquioxanes. Polym. Adv. Technol. 2020, 31, 2058–2074.https://doi.org/10.1002/pat.4929.Search in Google Scholar
34. Zhang, W., Li, X., Yang, R. Flame retardant mechanisms of phosphorus-containing polyhedral oligomeric silsesquioxane (DOPO-POSS) in polycarbonate composites. J. Appl. Polym. Sci. 2012, 124, 1848–1857.https://doi.org/10.1002/app.35203.Search in Google Scholar
35. Mohamed, M.G., Kuo, S.W. Functional silica and carbon nanocomposites based on polybenzoxazines. Macromol. Chem. Phys. 2019, 220, 1800306.https://doi.org/10.1002/macp.201800306.Search in Google Scholar
36. Mohamed, M.G., Kuo, S.W. Functional polyimide/polyhedral oligomeric silsesquioxane nanocomposites. Polymers 2019, 11, 26.10.3390/polym11010026Search in Google Scholar PubMed PubMed Central
37. Aly, K. I., Sayed, M. M., Mohamed, M. G., Kuo, S. W., Younis, O. A facile synthetic route and dual function of network luminescent porous polyester and copolyester containing porphyrin moiety for metal ions sensor and dyes adsorption. Micropor. Mesopor. Mat. 2020, 298, 110063.https://doi.org/10.1016/j.micromeso.2020.110063.Search in Google Scholar
38. Zhang, X., Zhao, S., Mohamed, M. G., Kuo, S. W., Xin, Z. Crystallization behaviors of poly(ethylene terephthalate) (PET) with monosilane isobutyl-polyhedral oligomeric silsesquioxanes (POSS). J. Mater. Sci. 2020, 55, 14642–14655.https://doi.org/10.1007/s10853-020-05003-9.Search in Google Scholar
39. Mohamed, M. G., Mansoure, T. H., Takashi, Y., Samy, M. M., Chen, T., Kuo, S. W. Ultrastable porous organic/inorganic polymers based on polyhedral oligomeric silsesquioxane (POSS) hybrids exhibiting high performance for thermal property and energy storage. Micropor. Mesopor. Mat. 2021, 328, 111505.https://doi.org/10.1016/j.micromeso.2021.111505.Search in Google Scholar
40. MohamedAtayde, M. G. E., Matsagard, B. M., Na, J., Yamauchi, Y., Wu, Kevin C., Kuo, S. W. Construction hierarchically mesoporous/microporous materials based on block copolymer and covalent organic framework. J. Taiwan Inst. Chem. E. 2020, 112, 180–192.https://doi.org/10.1016/j.jtice.2020.06.013.Search in Google Scholar
41. Ye, X., Zhang, W., Yang, R., He, J., Li, J., Zhao, F. Facile synthesis of lithium containing polyhedral oligomeric phenyl silsesquioxane and its superior performance in transparency, smoke suppression and flame retardancy of epoxy resin. Compos. Sci. Technol. 2020, 189, 108004.https://doi.org/10.1016/j.compscitech.2020.108004.Search in Google Scholar
© 2022 Walter de Gruyter GmbH, Berlin/Boston
Articles in the same Issue
- Frontmatter
- Material Properties
- Development and characterization of eco-friendly biopolymer gellan gum based electrolyte for electrochemical application
- Structural transitions and rheological properties of poly-d-lysine hydrobromide: effect of pH, salt, temperature, and shear rate
- Carbon dioxide adsorption onto modified polyvinyl chloride with ionic liquid
- Synergistic effect of organic-Zn(H2PO2)2 and lithium containing polyhedral oligomeric phenyl silse-squioxane on flame-retardant, thermal and mechanical properties of poly(ethylene terephthalate)
- Preparation and Assembly
- Network structural hardening of polypropylene matrix using hybrid of 0D, 1D and 2D carbon-ceramic nanoparticles with enhanced mechanical and thermomechanical properties
- An environment friendly hemp fiber modified with phytic acid for enhancing fire safety of automobile parts
- Flexible silicone rubber/carbon fiber/nano-diamond composites with enhanced thermal conductivity via reducing the interface thermal resistance
- In situ synthesis of Ag NPs in the galactomannan based biodegradable composite for the development of active packaging films
- Engineering and Processing
- Multi-objective optimization of injection molded parts with insert based on IFOA-GRNN-NSGA-II
Articles in the same Issue
- Frontmatter
- Material Properties
- Development and characterization of eco-friendly biopolymer gellan gum based electrolyte for electrochemical application
- Structural transitions and rheological properties of poly-d-lysine hydrobromide: effect of pH, salt, temperature, and shear rate
- Carbon dioxide adsorption onto modified polyvinyl chloride with ionic liquid
- Synergistic effect of organic-Zn(H2PO2)2 and lithium containing polyhedral oligomeric phenyl silse-squioxane on flame-retardant, thermal and mechanical properties of poly(ethylene terephthalate)
- Preparation and Assembly
- Network structural hardening of polypropylene matrix using hybrid of 0D, 1D and 2D carbon-ceramic nanoparticles with enhanced mechanical and thermomechanical properties
- An environment friendly hemp fiber modified with phytic acid for enhancing fire safety of automobile parts
- Flexible silicone rubber/carbon fiber/nano-diamond composites with enhanced thermal conductivity via reducing the interface thermal resistance
- In situ synthesis of Ag NPs in the galactomannan based biodegradable composite for the development of active packaging films
- Engineering and Processing
- Multi-objective optimization of injection molded parts with insert based on IFOA-GRNN-NSGA-II