Abstract
Making cryogels, which are among today’s accepted adsorbents, more functional with different methods, has been one of the subjects spent overtime. In this study, water-soluble poly(maleic anhydride-alt-acrylic acid) polymer embedded in poly(2-hydroxyethyl methacrylate) cryogels. Copper ions were then immobilised to this structure, and this polymer was used for adsorption of haemoglobin from aqueous systems. Adsorption interaction was carried out on an electrostatic basis, and approximately 448.62 mg haemoglobin/g polymer adsorption capacity value was obtained. It was found that the same material has managed to maintain its adsorption ability by 90.3% even after the use of it five times in the adsorption/desorption cycle. The adsorption interaction was determined to be appropriate for the Langmuir model by isotherm studies. The change in Gibbs free energy value was calculated as −2.168 kJ/mol.
References
1. Sainz, M. A., Serena, S., Belmonte, M., Miranzo, P., Osendi, M. I. Mater. Sci. Eng. C 2020, 110734. https://doi.org/10.1016/j.msec.2020.110734.Search in Google Scholar PubMed
2. Gajos, K., Budkowski, A., Petrou, P., Pagkali, V., Awsiuk, K., Rysz, J., Bernasik, A., Misiakos, K., Raptis, I., Kakabakos, S. Appl. Surf. Sci. 2018, 444, 187–196. https://doi.org/10.1016/j.apsusc.2018.03.029.Search in Google Scholar
3. Batista, C. C., Albuquerque, L. J., Jäger, A., Stepánek, P., Giacomelli, F. C. Mater. Sci. Eng. C 2020, 110850. https://doi.org/10.1016/j.msec.2020.110850.Search in Google Scholar PubMed
4. Li, R., Guan, X., Lin, X., Guan, P., Zhang, X., Rao, Z., Zhao, J., Du, L., Rong, J., Zhao, J. Acta Biomater. 2020, 110, 105–118. https://doi.org/10.1016/j.actbio.2020.04.002.Search in Google Scholar PubMed
5. Wang, P., Tang, X., Hu, L., Yin, Y., Chen, S., Xu, J., Wang, H. Process Biochem. 2020, 88, 31–37. https://doi.org/10.1016/j.procbio.2019.09.032.Search in Google Scholar
6. Erol, K., Cebeci, B. K., Köse, K., Köse, D. A. Int. J. Biol. Macromol. 2019, 123, 738–743. https://doi.org/10.1016/j.ijbiomac.2018.11.121.Search in Google Scholar PubMed
7. Erol, K., Köse, K. Artif. Cells Nanomed. Biotechnol. 2017, 45, 39–45. https://doi.org/10.1080/21691401.2016.1233112.Search in Google Scholar PubMed
8. Bulut, E., Sargin, I., Arslan, O., Odabasi, M., Akyuz, B., Kaya, M. Mater. Sci. Eng. C 2017, 70, 552–563. https://doi.org/10.1016/j.msec.2016.08.048.Search in Google Scholar PubMed
9. Erol, K., Uzunoglu, A., Köse, K., Sarıca, B., Avcı, E., Köse, D. A. J. Chromatogr. B 2018, 1081, 1–7. https://doi.org/10.1016/j.jchromb.2018.02.017.Search in Google Scholar PubMed
10. Erol, K. J. Macromol. Sci., Part A 2016, 53, 629–635. https://doi.org/10.1080/10601325.2016.1212310.Search in Google Scholar
11. Baydemir, G., Andaç, M., Derazshamshir, A., Uygun, D. A., Özçalışkan, E., Akgöl, S., Denizli, A. Mater. Sci. Eng. C 2013, 33, 532–536. https://doi.org/10.1016/j.msec.2012.09.027.Search in Google Scholar PubMed
12. Odabaşı, M., Baydemir, G., Karataş, M., Derazshamshir, A. J. Appl. Polym. Sci. 2010, 116, 1306–1312. https://doi.org/10.1002/app.v116:6.10.1002/app.v116:6Search in Google Scholar
13. Ceylan, Ş., Odabaşı, M. Artif. Cells Nanomed. Biotechnol. 2013, 41, 376–383. https://doi.org/10.3109/21691401.2012.759125.Search in Google Scholar PubMed
14. Yeşilova, E., Osman, B., Kara, A., Tümay Özer, E. Separ. Purif. Technol. 2018, 200, 155–163.10.1016/j.seppur.2018.02.002Search in Google Scholar
15. Alkan, H., Ceylan Cömert, Ş., Gürbüz, F., Doğru, M., Odabaşı, M. Artif. Cells Nanomed. Biotechnol. 2017, 45, 90–97. https://doi.org/10.3109/21691401.2015.1129627.Search in Google Scholar PubMed
16. Koç, İ., Baydemir, G., Bayram, E., Yavuz, H., Denizli, A. J. Hazard Mater. 2011, 192, 1819–1826. https://doi.org/10.1016/j.jhazmat.2011.07.017.Search in Google Scholar PubMed
17. Gurbuz, F., Ceylan, Ş., Odabaşı, M., Codd, G. A. Water Res. 2016, 90, 337–343. https://doi.org/10.1016/j.watres.2015.12.042.Search in Google Scholar PubMed
18. Cömert, Ş. C., Odabaşı, M. Mater. Sci. Eng. C 2014, 34, 1–8.10.1016/j.msec.2013.09.033Search in Google Scholar PubMed
19. Dolak, İ., Canpolat, G., Onat, R., Keçili, R., Baysal, Z., Ziyadanoğulları, B., Ersöz, A., Say, R. Process Biochem. 2020, 91, 189–196. https://doi.org/10.1016/j.procbio.2019.12.011.Search in Google Scholar
20. Tandon, L., Thakur, P., Singh, K., Khullar, P., Ahluwalia, G. K., Bakshi, M. S. Int. J. Biol. Macromol. 2020, 156, 576–584; https://doi.org/10.1016/j.ijbiomac.2020.04.008.Search in Google Scholar PubMed
21. Peng, W., Ding, F., Peng, Y. K., Sun, Y. Mol. Biosyst. 2014, 10, 138–148. https://doi.org/10.1039/c3mb70416e.Search in Google Scholar
22. Shen, X. C., Liou, X. Y., Ye, L. P., Liang, H., Wang, Z. Y. J. Colloid Interface Sci. 2007, 311, 400–406. https://doi.org/10.1016/j.jcis.2007.03.006.Search in Google Scholar
23. Williams, L. M., Fu, Z., Dulloor, P., Yen, T., Barron-Casella, E., Savage, W., Van Eyk, J. E., Casella, J. F., Everett, A. Proteonomics Clin. Appl. 2010, 4, 926–930. https://doi.org/10.1002/prca.201000054.Search in Google Scholar
24. Baran, N. Y., Acet, Ö., Odabaşı, M. Mater. Sci. Eng. C 2017, 73, 15–20. https://doi.org/10.1016/j.msec.2016.12.036.Search in Google Scholar
25. Erol, K. Artif. Cells Nanomed. Biotechnol. 2017, 45, 31–38. https://doi.org/10.1080/21691401.2016.1215326.Search in Google Scholar
26. Bakhshpour, M., Tamahkar, E., Andaç, M., Denizli, A. Colloids Surf. B Biointerfaces 2017, 158, 453–459. https://doi.org/10.1016/j.colsurfb.2017.07.023.Search in Google Scholar
27. Altıntas, E. B., Türkmen, D., Karakoc, V., Denizli, A. Colloids Surf. B Biointerfaces 2011, 85, 235–240. https://doi.org/10.1016/s0927-7765(11)00164-0.Search in Google Scholar
28. Can, H. K., Kavlak, S., Güner, A. Polym. Polym. Compos. 2016, 24, 213–224. https://doi.org/10.1177/096739111602400306.Search in Google Scholar
29. Can, H. K., Doğan, A. L., Rzaev, Z. M., Uner, A. H., Güner, A. J. Appl. Polym. Sci. 2006, 100, 3425–3432. https://doi.org/10.1002/app.21834.Search in Google Scholar
30. Erol, B., Erol, K., Gökmeşe, E. Process Biochem. 2019, 83, 104–113. https://doi.org/10.1016/j.procbio.2019.05.009.Search in Google Scholar
31. Erol, K., Bolat, M., Tatar, D., Nigiz, C., Köse, D. A. J. Mol. Struct. 2020, 1200, 127060. https://doi.org/10.1016/j.molstruc.2019.127060.Search in Google Scholar
32. Erol, K., Demet, T., Veyisoğlu, A., Tokatlı, A. J. Polym. Eng. 2021, 41, 144–154. https://doi.org/10.1515/polyeng-2020-0191.Search in Google Scholar
33. Kireç, O., Alacabey, İ., Erol, K., Alkan, H. J. Polym. Eng. 2021, 41, 226–234. https://doi.org/10.1515/polyeng-2020-0150.Search in Google Scholar
34. Erol, K., Köse, K., Uzun, L., Say, R., Denizli, A. Colloids Surf. B Biointerfaces 2016, 146, 567–576. https://doi.org/10.1016/j.colsurfb.2016.06.060.Search in Google Scholar PubMed
35. Bereli, N., Saylan, Y., Uzun, L., Say, R., Denizli, A. Separ. Purif. Technol. 2011, 82, 28–35. https://doi.org/10.1016/j.seppur.2011.08.011.Search in Google Scholar
36. Hajizadeh, S., Kettisen, K., Gram, M., Bülow, L., Ye, L. J. Chromatogr. A 2018, 1534, 22–31. https://doi.org/10.1016/j.chroma.2017.12.038.Search in Google Scholar PubMed
37. Erol, K., Uzun, L. J. Macromol. Sci., Part A 2017, 54, 867–875. https://doi.org/10.1080/10601325.2017.1342519.Search in Google Scholar
38. Erol, K., Yıldız, E., Alacabey, İ., Karabörk, M., Uzun, L. Environ. Sci. Pollut. Control Ser. 2019, 26, 33631–33641. https://doi.org/10.1007/s11356-019-06423-0.Search in Google Scholar PubMed
© 2021 Walter de Gruyter GmbH, Berlin/Boston
Articles in the same Issue
- Frontmatter
- Material properties
- Investigation of the silica pore size effect on the performance of polysulfone (PSf) mixed matrix membranes (MMMs) for gas separation
- Understanding thermal and rheological behaviors of bimodal polymethyl methacrylate (BPMMA) fabricated via solution blending
- Kinetic study of the pyrolysis of polypropylene over natural clay
- Investigation of morphology and transport properties of Na+ ion conducting PMMA:PEO hybrid polymer electrolyte
- Preparation and assembly
- Designing of new hydrophilic polyurethane using the graft-polymerized poly(acrylic acid) and poly(2-(dimethylamino)ethyl acrylate)
- Water-soluble polymeric particle embedded cryogels: Synthesis, characterisation and adsorption of haemoglobin
- Durable anti-oil-fouling superhydrophilic membranes for oil-in-water emulsion separation
- A facile route to dual-crosslinking polymeric hydrogels with enhanced mechanical property
- Antifouling enhancement of polyacrylonitrile-based membrane grafted with poly(sulfobetaine methacrylate) layers
- Engineering and processing
- Non-isothermal blade coating analysis of viscous fluid with temperature-dependent viscosity using lubrication approximation theory
- In-mold lightweight integrating for structural/functional devices
Articles in the same Issue
- Frontmatter
- Material properties
- Investigation of the silica pore size effect on the performance of polysulfone (PSf) mixed matrix membranes (MMMs) for gas separation
- Understanding thermal and rheological behaviors of bimodal polymethyl methacrylate (BPMMA) fabricated via solution blending
- Kinetic study of the pyrolysis of polypropylene over natural clay
- Investigation of morphology and transport properties of Na+ ion conducting PMMA:PEO hybrid polymer electrolyte
- Preparation and assembly
- Designing of new hydrophilic polyurethane using the graft-polymerized poly(acrylic acid) and poly(2-(dimethylamino)ethyl acrylate)
- Water-soluble polymeric particle embedded cryogels: Synthesis, characterisation and adsorption of haemoglobin
- Durable anti-oil-fouling superhydrophilic membranes for oil-in-water emulsion separation
- A facile route to dual-crosslinking polymeric hydrogels with enhanced mechanical property
- Antifouling enhancement of polyacrylonitrile-based membrane grafted with poly(sulfobetaine methacrylate) layers
- Engineering and processing
- Non-isothermal blade coating analysis of viscous fluid with temperature-dependent viscosity using lubrication approximation theory
- In-mold lightweight integrating for structural/functional devices