Home Thermal characterization of reactive blending of 70PC/30PET mixtures prepared in the presence/absence of samarium acetylacetonate as a transesterification catalyst
Article
Licensed
Unlicensed Requires Authentication

Thermal characterization of reactive blending of 70PC/30PET mixtures prepared in the presence/absence of samarium acetylacetonate as a transesterification catalyst

  • Ouahiba Meziane EMAIL logo , Melia Guessoum , Abderrahim Bensedira and Nacerddine Haddaoui
Published/Copyright: November 1, 2016
Become an author with De Gruyter Brill

Abstract

Poly(ethylene terephthalate) (PET)/polycarbonate (PC) blends were prepared in the presence and absence of samarium (III) acetylacetonate hydrate [Sm(acac)3] used as an ester-ester exchange reaction catalyst. Differential scanning calorimetry (DSC) and thermogravimetric analysis/differential thermogravimetry (TGA/DTG) were used to study the variations in the thermal properties of blends before and after reactive blending. Solubility measurements in methylene chloride (CH2Cl2) and infrared spectroscopy were also employed to highlight the structural changes that occurred during mixing in the presence of Sm(acac)3. The DSC results showed two distinct transition temperatures (Tg) for all the compositions. Also, the Tg values of components were shifted compared to the parent polymers in both the blends prepared with and without catalyst. Further, the Tg of the PET-rich phase was displaced to higher temperatures and that of the PC-rich phase showed a tendency to diminish as the catalyst’s concentration increased. At the same time, the melting temperature (Tm) of the PET-rich phase was shifted to lower temperatures. The evaluation of the compositions of the PC- and PET-rich phases using Wood’s equation showed a strong dependence on the catalyst concentration. Furthermore, the thermogravimetric thermograms showed that the thermal stability of the blends was between those of the homopolymers, and evidenced a net improvement relatively to the neat PET. The obtained results confirmed the aptitude of Sm(acac)3 to promote exchange reactions between PC and PET, and to achieve their compatibilization through an interfacial copolymer synthesis process.


Correction note:

Correction added after online publication November 1, 2016: Mistakenly this article was already published ahead of print under the title “Thermal characterization of reactive blending of 70PC/30PET mixtures prepared in the presence/absence of samariuma cetylacetonate as a transesterification catalyst”.


References

[1] Thomas S, Grohens Y, Jyotishkumar P, Eds., Characterization of Polymer Blends Miscibility, Morphology and Interfaces. Polymer Blends, Ed. Wiley: Germany, 2015, p. 1.10.1002/9783527645602Search in Google Scholar

[2] Thomas S, Shanks R, Sarathchandran C, Eds., Nanostructured Polymer Blends, Elsevier: UK, 2014, p. 1.10.1016/B978-1-4557-3159-6.00001-8Search in Google Scholar

[3] Kulshreshtha AK, Vasile C. Handbook of Polymer Blends and Composites, vol. 1. Rapra Technology Limited: UK, 2002.Search in Google Scholar

[4] Nadkarni VM, Rath AK. In: Handbook of Thermoplastic Polymers: Homopolymers, Copolymers, Blends, and Composites, Chapter 19. Wiley: Germany, 2002, pp. 835–869.10.1002/3527601961.ch19aSearch in Google Scholar

[5] Takeuchi K. In: Polymer Science. Elsevier: Japan, 2012, pp. 363–376.10.1016/B978-0-444-53349-4.00148-5Search in Google Scholar

[6] Forounchi M, Mehrabzadeh M, Mohseni S. Iran. Polym. J. 2002, 11, 151–157.Search in Google Scholar

[7] Utracki LA. Commercial Polymer Blends. Springer, India, 1998, pp. 390.10.1007/978-1-4615-5789-0Search in Google Scholar

[8] Zahedi P, Arefazar A. J. Appl. Polym. Sci. 2008, 107, 2917–2922.10.1002/app.27360Search in Google Scholar

[9] Kong Y, Hay JN. Polymer 2002, 43, 1805–1811.10.1016/S0032-3861(01)00772-8Search in Google Scholar

[10] Mendes LC, Giornes AM, Dias L, Cordeiro AF, Benzi MR. Int. J. Polym. Mater. Polym. Biomater. 2007, 56, 257–272.10.1080/00914030600812491Search in Google Scholar

[11] Na SK, Kong BG, Choi C, Jang MK, Nah JW, Kim JG, Jo BW. Macromol. Res. 2005, 13, 88–95.10.1007/BF03219020Search in Google Scholar

[12] Carrot C, Mbarek S, Jaziri M, Chalamet Y, Raveyre C, Prochazka F. Macromol. Mater. Eng. 2007, 292, 693–706.10.1002/mame.200700006Search in Google Scholar

[13] Mbarek S, Carrot C, Jaziri M. Polym. Eng. Sci. 2006, 46, 1378–1386.10.1002/pen.20625Search in Google Scholar

[14] Zhang Z, Xie Y, Ma D. Eur. Polym. J. 2001, 37, 1961–1966.10.1016/S0014-3057(01)00089-1Search in Google Scholar

[15] Nassar TR, Paul DR, Barlow JWJ. Appl. Polym. Sci. 1979, 23, 85–99.10.1002/app.1979.070230108Search in Google Scholar

[16] Murff SR, Barlow JW, Paul DRJ. Appl. Polym. Sci. 1984, 29, 3231–3240.10.1002/app.1984.070291102Search in Google Scholar

[17] Gowd EB, Ramesh C. Polymer 2005, 46, 7443–7449.10.1016/j.polymer.2005.05.075Search in Google Scholar

[18] Suzuki T, Tanaka H, Nishi T. Polymer 1989, 30, 1287–1297.10.1016/0032-3861(89)90050-5Search in Google Scholar

[19] Porter RS, Wang LH. Polymer 1992, 33, 2019–2030.10.1016/0032-3861(92)90866-USearch in Google Scholar

[20] Pilati F, Marianucci E, Berti C. J. Appl. Polym. Sci. 1985, 30, 1267–1275.10.1002/app.1985.070300330Search in Google Scholar

[21] Godard P, Dekoninck JM, Devlesaver V, Louoain B. J. Polym. Sci. 1986, 24, 3301–3313.10.1002/pola.1986.080241214Search in Google Scholar

[22] Guessoum M, Haddaoui N, Fenouillot-Rimlinger F. Int. J. Polym. Mater. Polym. Biomater. 2008, 57, 657–674.10.1080/00914030801891195Search in Google Scholar

[23] Reinsch E, Rebenfeld L. J. Appl. Polym. Sci. 1996, 59, 1913–1927.10.1002/(SICI)1097-4628(19960321)59:12<1913::AID-APP14>3.0.CO;2-SSearch in Google Scholar

[24] Al-Jabareen A, Illescas S, Maspoch ML, Santana OO. J. Mater. Sci. 2010, 45, 6623–6633.10.1007/s10853-010-4753-4Search in Google Scholar

[25] Mendes LC, Giornes AM, Dias ML, Cordeiro AF, Benzi MR. Int. J. Polym. Mater. Polym. Biomater. 2007, 56, 257–272.10.1080/00914030600812491Search in Google Scholar

[26] Nadkarni VM, Shingankuli VL, Jog JP. Polym. Eng. Sci. 1988, 28, 1326–1333.10.1002/pen.760282007Search in Google Scholar

[27] Ignatov VN, Carraro C, Tartari V, Pippa R, Pilati F, Berti C, Fiorini M. Polymer 1996, 37, 5883–5887.10.1016/S0032-3861(96)00610-6Search in Google Scholar

[28] Guessoum M, Nekkaa S, Haddaoui N. Int. J. Polym. Mater. Polym. Biomater. 2008, 57, 759–770.10.1080/00914030801891179Search in Google Scholar

[29] Maurizio Fiorini FP, Corrado Berti MT, Ignatov V. Polymer 1997, 38, 413–419.10.1016/S0032-3861(96)00520-4Search in Google Scholar

[30] Ignatov VN, Carraro C, Tartari V, Pippa R, Scapin M, Ricerche EC, Piazza B. Polymer 1997, 38, 195–200.10.1016/S0032-3861(96)00558-7Search in Google Scholar

[31] Zhang GY, Ma JW, Cui BX, Luo XL, Ma DZ. Macromol. Chem. Phys. 2001, 202, 604–613.10.1002/1521-3935(20010301)202:5<604::AID-MACP604>3.0.CO;2-GSearch in Google Scholar

[32] Berti C, Bonora V, Pilati F, Fiorini M. Macromol. Chem. 1992, 193, 1665–1677.10.1002/macp.1992.021930710Search in Google Scholar

[33] Guessoum M, Haddaoui N. Int. J. Polym. Mater. Polym. Biomater. 2006, 55, 715–732.10.1080/00914030500362092Search in Google Scholar

[34] Fraısse F, Verney V, Commereuc S, Obadal M. Polym. Degrad. Stabil. 2005, 90, 250–255.10.1016/j.polymdegradstab.2005.02.019Search in Google Scholar

[35] Mendes LC, Pereira PSC, Ramos VD. Macromol. Symp. 2011, 299/300, 183–189.10.1002/masy.200900112Search in Google Scholar

[36] Frounchi M, Mehrabzadeh M, Mohseni S. Iran. Polym. J. 2002, 11, 151–157.Search in Google Scholar

[37] Thirtha V, Lehman R, Nosker T. Polymer 2006, 47, 5392–5401.10.1016/j.polymer.2006.05.014Search in Google Scholar

[38] Hanrahan BD, Angeli SR, Runt J. Polym. Bull. 1986, 15, 455–463.10.1007/BF00265729Search in Google Scholar

[39] Mendes LC, Pereira PSDC. Mater. Sci. Appl. 2011, 2, 1033–1040.10.4236/msa.2011.28140Search in Google Scholar

[40] Mendes LC, Abrigo RER, Ramos VD, Pereira PSC. J. Therm. Anal. Calorim. 2010, 99, 545–549.10.1007/s10973-009-0211-4Search in Google Scholar

[41] Marchese P, Celli A, Fiorini M, Gabaldi M. Eur. Polym. J. 2003, 39, 1081–1089.10.1016/S0014-3057(02)00377-4Search in Google Scholar

[42] Marchese P, Celli A, Fiorini M, Applicata C, Bologna U, Risorgimento V. Macromol. Chem. Phys. 2002, 203, 695–704.10.1002/1521-3935(20020301)203:4<695::AID-MACP695>3.0.CO;2-CSearch in Google Scholar

[43] Aravind I, Pionteck J, Thomas S. Polym. Test. 2012, 31, 16–24.10.1016/j.polymertesting.2011.09.004Search in Google Scholar

[44] Wood LA. J. Polym. Sci. 1958, 28, 319–329.10.1002/pol.1958.1202811707Search in Google Scholar

[45] Kim WN, Burns CM. J. Polym. Sci. Pt. B Polym. Phys. 1990, 28, 1409–1429.10.1002/polb.1990.090280901Search in Google Scholar

[46] Al-Jabareen A, Illescas S, Maspoch ML, Santana OO. J. Mater. Sci. 2010, 45, 6623–6633.10.1007/s10853-010-4753-4Search in Google Scholar

[47] Phuong VT, Coltelli MB, Cinelli P, Cifelli M, Verstichel S, Lazzeri A. Polymer 2014, 55, 4498–4513.10.1016/j.polymer.2014.06.070Search in Google Scholar

[48] Swoboda B, Buonomo S, Leroy E, Lopez Cuesta JM. Polym. Degrad. Stabil. 2008, 93, 910–917.10.1016/j.polymdegradstab.2008.02.003Search in Google Scholar

[49] Swoboda B, Buonomo S, Leroy E, Cuesta JML. Polym. Degrad. Stabil. 2007, 92, 2247–2256.10.1016/j.polymdegradstab.2007.01.038Search in Google Scholar

Received: 2016-5-23
Accepted: 2016-9-16
Published Online: 2016-11-1
Published in Print: 2017-7-26

©2017 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 3.12.2025 from https://www.degruyterbrill.com/document/doi/10.1515/polyeng-2016-0190/pdf
Scroll to top button