Abstract
Hygrothermic aging of epoxy and carbon nanotube (CNT)/epoxy composites (0.5, 0.75, and 1 wt.%) was studied for their application suitability in seawater environments. The specimens were emerged in seawater and kept at constant temperature of 30°C for a maximum duration of 180 days. The specimens were periodically weighed for water absorption study and tested for mechanical as well as thermal properties. All aged samples were showing some amount of degradation owing to their moisture-absorption rates. CNT composites absorbed less moisture than pure epoxy because of the presence of nanofillers. C0.75 was found to be hygrothermally more stable reflecting minimum reduction in flexural properties and glass transition temperature value, which was due to least moisture/water absorption. Deterioration of properties was significant in C1, though it was better than pure epoxy. Fractographic analysis by scanning electron microscopy (SEM) revealed interfacial debonding as the dominant failure mechanism, resulting in pull out of nanotubes.
Acknowledgments
The authors thank the Naval Research Board, New Delhi for providing the financial support for this research work (Grant/Award Number: ‘209/MAT/2010-11’).
References
[1] Zhang A, Dong-xing Z, Di-hong L, Tao S, Hai-ying X, Jin J. Energy Procedia 2012, 16, 1737–1743.10.1016/j.egypro.2012.01.269Search in Google Scholar
[2] Muthirakkal S, Murthy HN, Krishna M, Rai KS, Karippal JJ. Iran Polym. J. 2010, 19, 89–103.Search in Google Scholar
[3] Cauich-Cupul JI, Pérez-Pacheco E, Valadez-González A, Herrera-Franco PJ. J. Mater. Sci. 2011, 46, 6664–6672.10.1007/s10853-011-5619-0Search in Google Scholar
[4] Hough JA, Karad SK, Jones FR. Compos. Sci. Technol. 2015, 65, 1299–1305.10.1016/j.compscitech.2005.01.009Search in Google Scholar
[5] Costa ML, Almeida SF, Rezende MC. Mater. Res. 2005, 8, 335–340.10.1590/S1516-14392005000300019Search in Google Scholar
[6] Asp LE. Compos. Sci. Technol. 1998, 58, 967–977.10.1016/S0266-3538(97)00222-4Search in Google Scholar
[7] Ray BC. J. Colloid Interface Sci. 2006, 298, 111–117.10.1016/j.jcis.2005.12.023Search in Google Scholar PubMed
[8] Ladhari A, Daly HB, Belhadjsalah H, Cole KC, Denault J. Polym. Degrad. Stab. 2010, 95, 429–439.10.1016/j.polymdegradstab.2009.12.001Search in Google Scholar
[9] Pramoda KP, Liu T. J. Polym. Sci. B Polym. Phys. 2004, 42, 1823–1830.10.1002/polb.20061Search in Google Scholar
[10] Gurtin ME, Yatomi C. J. Comp. Mater. 1979, 13, 126–131.10.1177/002199837901300204Search in Google Scholar
[11] Lee JH, Rhee KY, Lee JH. Appl. Surf. Sci. 2010, 256, 7658–7667.10.1016/j.apsusc.2010.06.023Search in Google Scholar
[12] Guadagno L, Vertuccio L, Sorrentino A, Raimondo M, Naddeo C, Vittoria V, Iannuzzo G, Calvi E, Russo S. Carbon 2009, 47, 2419–2430.10.1016/j.carbon.2009.04.035Search in Google Scholar
[13] Prolongo SG, Gude MR, Urena A. Compos. Part A 2012, 43, 2169–2175.10.1016/j.compositesa.2012.07.014Search in Google Scholar
[14] Jen Y, Huang C. Trans. Can. Soc. Mech. Eng. 2013, 37, 755–763.10.1139/tcsme-2013-0063Search in Google Scholar
[15] Nogueira P, Ramirez C, Torres A, Abad MJ, Cano J, Lopez J, López-Bueno I, Barral L. J. Appl. Polym. Sci. 2001, 80, 71–80.10.1002/1097-4628(20010404)80:1<71::AID-APP1077>3.0.CO;2-HSearch in Google Scholar
[16] Cabanelas JC, Prolongo SG, Serrano B, Bravo J, Baselga J. J. Mater. Process. Technol. 2003, 144, 143–144.Search in Google Scholar
[17] Zhou J, Lucas JP. Polymer 1999, 40, 5505–5512.10.1016/S0032-3861(98)00790-3Search in Google Scholar
[18] Barkoula NM, Paipetis A, Matikas T, Vavouliotis A, Karapappas P, Kostopoulos V. Mech. Compos. Mater. 2009, 45, 21–32.10.1007/s11029-009-9059-8Search in Google Scholar
[19] Xiao GZ, Delamar M, Shanahan ME. J. Appl. Polym. Sci. 1997, 65, 449–458.10.1002/(SICI)1097-4628(19970718)65:3<449::AID-APP4>3.0.CO;2-HSearch in Google Scholar
[20] Xiao GZ, Shanahan ME. Polymer 1998, 39, 3253–3260.10.1016/S0032-3861(97)10060-XSearch in Google Scholar
[21] Zulfli NM, Bakar AA, Chow WS. J. Reinf. Plast. Compos. 2013, 32, 1715–1721.10.1177/0731684413501926Search in Google Scholar
[22] Starkova O, Buschhorn ST, Mannov E, Schulte K, Aniskevich A. Eur. Polym. J. 2013, 49, 2138–2148.10.1016/j.eurpolymj.2013.05.010Search in Google Scholar
[23] Bal S. Mater. Des. 2010, 31, 2406–2413.10.1016/j.matdes.2009.11.058Search in Google Scholar
[24] Bal S, Saha S. High Perform. Polym. 2014, 26, 953–960.10.1177/0954008314535823Search in Google Scholar
[25] Garg M, Sharma S, Mehta R. J. Reinf. Plast. Compos. 2013, 51, 1–7.Search in Google Scholar
[26] Zafar A, Bertocco F, Schjødt-Thomsen J, Rauhe JC. Compos. Sci. Technol. 2012, 72, 656–666.10.1016/j.compscitech.2012.01.010Search in Google Scholar
[27] Tsenoglou CJ, Pavlidou S, Papaspyrides CD. Compos. Sci. Technol. 2006, 66, 2855–2864.10.1016/j.compscitech.2006.02.022Search in Google Scholar
[28] Shen CH, Springer GS. J. Compos. Mater. 1976, 10, 2–20.10.1177/002199837601000101Search in Google Scholar
[29] Srihari S, Revathi A, Rao RM. J. Reinf. Plast. 2002, 21, 983–991.10.1177/073168402128987644Search in Google Scholar
[30] Mohan TP, Kanny K. Compos. Part A Appl. Sci. Manuf. 2011, 42, 385–393.10.1016/j.compositesa.2010.12.010Search in Google Scholar
[31] Becker O, Varley RJ, Simon GP. Eur. Polym. J. 2004, 40, 187–195.10.1016/j.eurpolymj.2003.09.008Search in Google Scholar
[32] Liu W, Hoa SV, Pugh M. Compos. Sci. Technol. 2005, 65, 2364–2373.10.1016/j.compscitech.2005.06.007Search in Google Scholar
[33] Zhao H, Li RKY. Compos Part A 2008, 39, 602–611.10.1016/j.compositesa.2007.07.006Search in Google Scholar
[34] Prolongo SG, Campo M, Gude MR, Chaos-Morán R, Ureña A. Compos. Sci. Technol. 2009, 69, 349–357.10.1016/j.compscitech.2008.10.018Search in Google Scholar
[35] Song YS, Youn JR. Carbon 2005, 43, 1378–1385.10.1016/j.carbon.2005.01.007Search in Google Scholar
[36] Zhou Y, Pervin F, Lewis L, Jeelani S. Mater. Sci. Eng. A 2008, 475, 157–165.10.1016/j.msea.2007.04.043Search in Google Scholar
[37] Ramana GV, Padya B, Kumar RN, Prabhakar KV, Jain PK. Indian J. Eng. Mater. S2010, 17, 331–337.Search in Google Scholar
[38] Al-Rawi KR, Hedar AJ, Mahmood OA. IJAIEM 2014, 3, 132–137.Search in Google Scholar
[39] Ma PC, Mo SY, Tang BZ, Kim JK. Carbon 2010, 48, 1824–1834.10.1016/j.carbon.2010.01.028Search in Google Scholar
[40] Salam MB, Hosur MV, Zainuddin S, Jeelani S. O J. Comp. Mater. 2013, 3, 1–9.10.4236/ojcm.2013.32A001Search in Google Scholar
[41] Alamri H, Low IM. Compos. A Appl. Sci. Manuf. 2013, 44, 23–31.10.1016/j.compositesa.2012.08.026Search in Google Scholar
[42] Dhakal HN, Zhang ZY, Richardson MOW. Compos. Sci. Technol. 2007, 67, 1674–1683.10.1016/j.compscitech.2006.06.019Search in Google Scholar
[43] Vertuccio L, Sorrentino A, Guadagno L, Bugatti V, Raimondo M, Naddeo C, Vittoria V. J. Polym. Res. 2013, 20, 1–3.10.1007/s10965-013-0178-5Search in Google Scholar
[44] Pandian A, Vairavan M, Jebbas Thangaiah WJ, Uthayakumar M. J. Compos. Article 2014, ID 587980, 8 pages.10.1155/2014/587980Search in Google Scholar
[45] Marouani S, Curtil L, Hamelin P. Compos. Part B Eng. 2012, 43, 2020–2030.10.1016/j.compositesb.2012.01.001Search in Google Scholar
[46] Gellert EP, Turley D. Compos A Appl. Sci. Manufact. 1999, 30, 1259–1265.10.1016/S1359-835X(99)00037-8Search in Google Scholar
[47] Anter FH, Hasan HS. J. Univ. Anbar Pure Sci. 2011, 5. ISSN: 1991-8941.Search in Google Scholar
[48] Abdalla M, Dean D, Adibempe D, Nyairo E, Robinson P, Thompson G. Polymer 2007, 48, 5662–5670.10.1016/j.polymer.2007.06.073Search in Google Scholar
[49] Ma PC, Kim JK, Tang BZ. Compos. Sci. Technol. 2004, 67, 2965.10.1016/j.compscitech.2007.05.006Search in Google Scholar
[50] Tian S, Wang X. J Matter. Sci. 2008, 43, 4979–4987.10.1007/s10853-008-2734-7Search in Google Scholar
[51] Davison, SP. Enviro-Mechanical Durability of Graphite/Epoxy Composite Materials, PhD diss., Virginia Polytechnic Institute and State University: USA, 2003.Search in Google Scholar
[52] Karbhari VM, Xian G. Compos. Part B 2009, 40, 41–49.10.1016/j.compositesb.2008.07.003Search in Google Scholar
[53] Pérez-Pacheco E, Cauich-Cupul JI, Valadez-González A, Herrera-Franco PJ. J. Mater. Sci. 2013, 48, 1873–1882.10.1007/s10853-012-6947-4Search in Google Scholar
[54] Allaoui A, Bai S, Cheng HM, Bai JB. Compos. Sci. Technol. 2002, 62, 1993–1998.10.1016/S0266-3538(02)00129-XSearch in Google Scholar
[55] Chen H, Jacobs O, Wu W, Rüdiger G, Schädel B. Polym. Test 2007, 26, 351–360.10.1016/j.polymertesting.2006.11.004Search in Google Scholar
[56] Song R, Yang D, He L. J. Mater. Sci. 2008, 43, 1205–1213.10.1007/s10853-007-2277-3Search in Google Scholar
[57] Bal S. Bull. Mater. Sci. 2010, 33, 27–31.10.1007/s12034-010-0004-1Search in Google Scholar
[58] Ayatollahi MR, Shadlou S, Shokrieh MM. Eng. Fract. Mech. 2011, 78, 2620–2632.10.1016/j.engfracmech.2011.06.021Search in Google Scholar
[59] Soles CL, Chang FT, Gidley DW, Yee AF. J. Polym. Sci. Part B Polym. Phys. 2000, 38, 776–791.10.1002/(SICI)1099-0488(20000301)38:5<776::AID-POLB15>3.0.CO;2-ASearch in Google Scholar
©2017 Walter de Gruyter GmbH, Berlin/Boston
Articles in the same Issue
- Frontmatter
- Original articles
- Effect of the variation of the gating system on the magnetic properties of injection molded pole-oriented rings
- Effect of graphite and silicon carbide fillers on mechanical properties of PA6 polymer composites
- Mechanical properties, thermal and crystallization behavior of different surface-modified silica nanoparticle-filled PA66 composites
- Thermal characterization of reactive blending of 70PC/30PET mixtures prepared in the presence/absence of samarium acetylacetonate as a transesterification catalyst
- Understanding the interactive effects of material parameters governing the printer toner properties: a response surface study
- Quest for electroconducting structural polymers: CNTs/Polybond nanocomposites with improved electrical and mechanical properties
- Comb-like copolymer dispersant for PP/CaCO3 composites: effects of particle concentration on properties of composites
- Study of PVAc-PMMA-LiCl polymer blend electrolyte and the effect of plasticizer ethylene carbonate and nanofiller titania on PVAc-PMMA-LiCl polymer blend electrolyte
- Mechanical performances of hygrothermally conditioned CNT/epoxy composites using seawater
Articles in the same Issue
- Frontmatter
- Original articles
- Effect of the variation of the gating system on the magnetic properties of injection molded pole-oriented rings
- Effect of graphite and silicon carbide fillers on mechanical properties of PA6 polymer composites
- Mechanical properties, thermal and crystallization behavior of different surface-modified silica nanoparticle-filled PA66 composites
- Thermal characterization of reactive blending of 70PC/30PET mixtures prepared in the presence/absence of samarium acetylacetonate as a transesterification catalyst
- Understanding the interactive effects of material parameters governing the printer toner properties: a response surface study
- Quest for electroconducting structural polymers: CNTs/Polybond nanocomposites with improved electrical and mechanical properties
- Comb-like copolymer dispersant for PP/CaCO3 composites: effects of particle concentration on properties of composites
- Study of PVAc-PMMA-LiCl polymer blend electrolyte and the effect of plasticizer ethylene carbonate and nanofiller titania on PVAc-PMMA-LiCl polymer blend electrolyte
- Mechanical performances of hygrothermally conditioned CNT/epoxy composites using seawater