Abstract
An investigation on the cooling-induced crystallization in three thermoplastic polyurethanes based on MDI, PTMG, and 1.4-BD as chain extender with different hard segment content is reported. Thermal transitions were determined using differential scanning calorimetry (DSC) measurements at different cooling rates, and thermal stability was studied by thermogravimetric analysis. Changes in Raman spectra were useful to correlate the thermal transitions with changes in the morphology of the polymers. The dissimilarity in the composition gave different rheological behavior in the molten state, indicated by the temperature dependence of the viscosity. The mechanical properties and the crystallinity was influenced not only by the cooling rate but also by the hard segment content. Thermoplastic polyurethanes with more hard segment content formed more crystalline hard domains as evidenced by the DSC and atomic force microscopy results.
Acknowledgments
The authors would like to thank the program “Estrategia de Sostenibilidad 2015–2016, Universidad de Antioquia”. We also want to thank “Colciencias movilidad Colombia-Argentina 533, 2011”. Finally, the support of Prof. Arvind Raman and Maria José Cadena from Purdue University with the AFM measurements, Prof. Juan Meza with the nanoindentation measurements, and Adriana Valencia with the Raman measurements is greatly appreciated.
References
[1] Marín Bernabé, R. In Departament d’Enginyeria Química, Universitat Politècnica de Catalunya: Catalunya, 2009, Vol. Ph.D. Thesis, pp 253.Search in Google Scholar
[2] Baudis S, Ligon SC, Seidler K, Weigel G, Grasl C, Bergmeister H, Schima H, Liska R. J. Polym. Sci. Polym. Chem. 2012, 50, 1272–1280.10.1002/pola.25887Search in Google Scholar
[3] Bistričić L, Baranović G, Leskovac M, Bajsić EG. Eur. Polym. J. 2010, 46, 1975–1987.10.1016/j.eurpolymj.2010.08.001Search in Google Scholar
[4] Kiran S, James NR, Jayakrishnan A, Joseph R. J. Biomed. Mater. Res.-A 2012, 100 A, 3472–3479.10.1002/jbm.a.34295Search in Google Scholar
[5] Pizzatto L, Lizot A, Fiorio R, Amorim CL, Machado G, Giovanela M, Zattera AJ, Crespo JS. Mater. Sci. Eng. C 2009, 29, 474–478.10.1016/j.msec.2008.08.035Search in Google Scholar
[6] González-Paz RJ, Ferreira AM, Mattu C, Boccafoschi F, Lligadas G, Ronda JC, Galià M, Cádiz V, Ciardelli G. React. Funct. Polym. 2013, 73, 690–697.10.1016/j.reactfunctpolym.2013.02.005Search in Google Scholar
[7] Chen Q, Liang S, Thouas GA. Prog. Polym. Sci. 2013, 38, 584–671.10.1016/j.progpolymsci.2012.05.003Search in Google Scholar
[8] Guan J, Sacks MS, Beckman EJ, Wagner WR. Biomaterials 2004, 25, 85–96.10.1016/S0142-9612(03)00476-9Search in Google Scholar
[9] El-Fattah MA, El Saeed AM, Dardir MM, El-Sockary MA. Prog. Org. Coat. 2015, 89, 212–219.10.1016/j.porgcoat.2015.09.010Search in Google Scholar
[10] Zhang P, Tian S, Fan H, Chen Y, Yan J. Prog. Org. Coat. 2015, 89, 170–180.10.1016/j.porgcoat.2015.09.015Search in Google Scholar
[11] McLean RS, Sauer BB. Macromolecules 1997, 30, 8314–8317.10.1021/ma970350eSearch in Google Scholar
[12] Velankar S, Cooper SL. Macromolecules 1998, 31, 9181–9192.10.1021/ma9811472Search in Google Scholar
[13] Yang B, Huang WM, Li C, Li L, Chor JH. Scripta Mater. 2005, 53, 105–107.10.1016/j.scriptamat.2005.03.009Search in Google Scholar
[14] Crawford DM, Bass RG, Haas TW. Thermochim. Acta 1998, 323, 53–63.10.1016/S0040-6031(98)00541-3Search in Google Scholar
[15] Lu G, Kalyon DM, Yilgör I, Yilgör E. Polym. Eng. Sci. 2003, 43, 1863–1877.10.1002/pen.10158Search in Google Scholar
[16] Yoon PJ, Han CD. Macromolecules 2000, 33, 2171–2183.10.1021/ma991741rSearch in Google Scholar
[17] Hernandez R, Weksler J, Padsalgikar A, Taeyi C, Angelo E, Lin JS, Xu LC, Siedlecki CA, Runt J. Macromolecules 2008, 41, 9767–9776.10.1021/ma8014454Search in Google Scholar
[18] Castagna AM, Fragiadakis D, Lee H, Choi T, Runt J. Macromolecules 2011, 44, 7831–7836.10.1021/ma2017138Search in Google Scholar
[19] Aurilia M, Piscitelli F, Sorrentino L, Lavorgna M, Iannace S. Eur. Polym. J. 2011, 47, 925–936.10.1016/j.eurpolymj.2011.01.005Search in Google Scholar
[20] Leung LM, Koberstein JT. Macromolecules 1986, 19, 706–713.10.1021/ma00157a038Search in Google Scholar
[21] Bagdi K, Molnár K, Kállay M, Schön P, Vancsó JG, Pukánszky B. Eur. Polym. J. 2012, 48, 1854–1865.10.1016/j.eurpolymj.2012.07.016Search in Google Scholar
[22] Nichetti D, Grizzuti N. Polym. Eng. Sci. 2004, 54, 1514–1521.10.1002/pen.20148Search in Google Scholar
[23] Janik H, Pałys B, Petrovic ZS. Macromol. Rapid Comm. 2003, 24, 265–268.10.1002/marc.200390039Search in Google Scholar
[24] Roohpour N, Wasikiewicz J, Paul D, Vadgama P, Rehman I. J. Mater. Sci.-Mater. M. 2009, 20, 1803–1814.10.1007/s10856-009-3754-9Search in Google Scholar
[25] Parnell S, Min K, Cakmak M. Polymer 2003, 44, 5137–5144.10.1016/S0032-3861(03)00468-3Search in Google Scholar
[26] Cuéllar A, Mesa F, Vargas C, Perilla J. Rev. Fac. Ing. Univ. Ant. 2010, 54, 57–64.Search in Google Scholar
[27] El-Abassy RM, Donfack P, Materny A. Food Res. Int. 2010, 43, 694–700.10.1016/j.foodres.2009.10.021Search in Google Scholar
[28] Yanagihara Y, Osaka N, Murayama S, Saito H. Polymer 2013, 54, 2183–2189.10.1016/j.polymer.2013.02.005Search in Google Scholar
[29] Yoshitake N, Furukawa M. J. Anal. Appl. Pyrol. 1995, 33, 269–281.10.1016/0165-2370(94)00840-WSearch in Google Scholar
[30] Lattimer RP, Polce MJ, Wesdemiotis C. J. Anal. Appl. Pyrol. 1998, 48, 1–15.10.1016/S0165-2370(98)00092-8Search in Google Scholar
[31] Herrera M, Matuschek G, Kettrup A. Polym. Degrad. Stabil. 2002, 78, 323–331.10.1016/S0141-3910(02)00181-7Search in Google Scholar
[32] ASTM. West Conshohocken, PA 19428-2959. United States, 2010.Search in Google Scholar
[33] Yamasaki S, Nishiguchi D, Kojio K, Furukawa M. Polymer 2007, 48, 4793–4803.10.1016/j.polymer.2007.06.006Search in Google Scholar
©2017 Walter de Gruyter GmbH, Berlin/Boston
Articles in the same Issue
- Frontmatter
- Original articles
- Preparation of epoxy/acrylonitrile-butadiene-styrene copolymer/short carbon fiber composites with a self-made conical mixer
- Preparation and characterization of poly (amide-ester-imide)/Na+-MMT nanocomposite via ultrasonic method
- Polyurethane membrane with a cyclodextrin-modified carbon nanotube for pervaporation of phenol/water mixture
- Fabrication of chitosan/PEO nanofiber mats with mica by electrospinning
- Effect of cooling induced crystallization upon the properties of segmented thermoplastic polyurethanes
- Conductivity and dielectric analysis of nanocolloidal polypyrrole particles functionalized with higher weight percentage of poly(styrene sulfonate) using the dispersion polymerization method
- Mechanism and solutions of appearance defects on microfluidic chips manufactured by UV-curing assisted injection molding
- Effect of gas counter pressure on shrinkage and residual stress for injection molding process
- Ablation and mechanical investigation of heat vulcanizing silicone rubber (HVSR) composite containing carbon fibers
- Cavitation desulfurization in vulcanized rubber recycling under ultra-high pressure water jet
Articles in the same Issue
- Frontmatter
- Original articles
- Preparation of epoxy/acrylonitrile-butadiene-styrene copolymer/short carbon fiber composites with a self-made conical mixer
- Preparation and characterization of poly (amide-ester-imide)/Na+-MMT nanocomposite via ultrasonic method
- Polyurethane membrane with a cyclodextrin-modified carbon nanotube for pervaporation of phenol/water mixture
- Fabrication of chitosan/PEO nanofiber mats with mica by electrospinning
- Effect of cooling induced crystallization upon the properties of segmented thermoplastic polyurethanes
- Conductivity and dielectric analysis of nanocolloidal polypyrrole particles functionalized with higher weight percentage of poly(styrene sulfonate) using the dispersion polymerization method
- Mechanism and solutions of appearance defects on microfluidic chips manufactured by UV-curing assisted injection molding
- Effect of gas counter pressure on shrinkage and residual stress for injection molding process
- Ablation and mechanical investigation of heat vulcanizing silicone rubber (HVSR) composite containing carbon fibers
- Cavitation desulfurization in vulcanized rubber recycling under ultra-high pressure water jet